T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells.

Cardiovasc Res

Department of Research, Cardiovascular Laboratories, Basel University Hospital, ZLF 316, Hebelstrasse 20, CH 4031 Basel, Switzerland.

Published: October 2004

Objective: In vascular tissue, T-cadherin (T-cad) levels correlate with the progression of atherosclerosis, restenosis and tumour neovascularization. This study investigates whether T-cad influences proliferation of vascular cells.

Methods And Results: Cultures of human umbilical vein endothelial cells (HUVEC) and rat and human aortic smooth muscle cells (rSMC, hSMC) were used. T-cad was overexpressed in HUVEC and hSMC using an adenoviral expression system. In cultures released from G(1)/G(0) synchrony parallel immunoblot analysis of T-cad and cell cycle phase specific markers (p27(Kip1), cyclin D1, E2F1, PCNA, cyclin B) showed increased T-cad protein levels subsequent to entry into early S-phase with sustained elevation through S-and M-phases. T-cad was increased in G(2)/M-phase (colchicine) synchronized cultures. In FACS-sorted cell populations, expression of T-cad in S-and G(2)/M-phase was higher than G(1)/G(0)-phase. Compared with empty-and LacZ-vector infected controls, HUVEC and hSMC overexpressing T-cad exhibited increased proliferation as assessed in enumeration and DNA synthesis assays. Additionally, following release from G(1)/G(0) synchrony, HUVEC and hSMC overexpressing T-cad enter S-phase more rapidly. Flow cytometry after BrdU/propidium labelling confirmed increased cell cycle progression in T-cad overexpressing cells.

Conclusion: In vascular cells, T-cad is dynamically regulated during the cell cycle and its expression functions in the promotion of proliferation. T-cad may facilitate progression of proliferative vascular disorders such as atherosclerosis, restenosis and tumour angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cardiores.2004.06.010DOI Listing

Publication Analysis

Top Keywords

t-cad
12
huvec hsmc
12
cell cycle
12
proliferation vascular
8
vascular cells
8
atherosclerosis restenosis
8
restenosis tumour
8
g1/g0 synchrony
8
hsmc overexpressing
8
overexpressing t-cad
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!