Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism.

Brain Res

Division of Psychopharmacology, Departments of Psychiatry and Pharmacology, Vanderbilt University School of Medicine, 1601 23rd Avenue South, The First Floor Laboratory Rm-1117, The Psychiatric Hospital at Vanderbilt, Nashville, TN 37212, USA.

Published: October 2004

Atypical antipsychotic drugs (APDs) such as clozapine, but not the typical APD haloperidol, improve some aspects of cognition in schizophrenia. This advantage has been attributed, in part, to the ability of the atypical APDs to markedly increase acetylcholine (ACh) and dopamine (DA) release in rat medial prefrontal cortex (mPFC), while producing a minimal effect in the nucleus accumbens (NAC) or striatum. The atypical APD-induced preferential release of DA, but not ACh, in the mPFC is partially inhibited by the selective 5-HT(1A) antagonist WAY100635. However, little is known about these effects of atypical APDs in the ventral hippocampus (vHIP), another possible site of action of atypical APDs with regard to cognitive enhancement. The present study demonstrates that clozapine (10 mg/kg) comparably increases both ACh and DA release in the vHIP and mPFC. The increases in DA, but not ACh, release in both regions were partially attenuated by WAY100635 (0.2 mg/kg), which had no effect by itself on the release of either neurotransmitter in either region. Tetrodotoxin (TTX; 1 microM), a Na(+) channel blocker, in the perfusion medium, eliminated the clozapine (10 mg/kg)-induced ACh and DA release in the vHIP, indicating their neuronal origin. Haloperidol produced a slight increase in ACh release in the vHIP at 1 mg/kg, and DA release in the mPFC at 0.1 mg/kg. In conclusion, clozapine increases ACh and DA release in the vHIP and mPFC, whereas haloperidol has minimal effects on the release of these two neurotransmitters in either region. These differences may contribute, at least in part, to the superior ability of clozapine, compared to haloperidol, to improve cognition in schizophrenia. 5-HT(1A) agonism is important to the ability of clozapine and perhaps other atypical APDs to increase DA, but not ACh, release in the vHIP, as well as the mPFC. The role of hippocampus in the cognitive effects of atypical APDs warrants more intensive study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.07.009DOI Listing

Publication Analysis

Top Keywords

ach release
24
atypical apds
20
release vhip
20
release
12
increases ach
12
clozapine increases
8
dopamine release
8
release rat
8
ventral hippocampus
8
haloperidol improve
8

Similar Publications

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

Objective: The gut-brain axis (GBA) is involved in the modulation of multiple physiological activities, and the vagus nerve plays an important role in this process. However, the association between vagus nerve function and nutritional regulation remains unclear. Here, we explored changes in the nutritional status of mice after vagotomy and investigated the underlying mechanisms responsible for these changes.

View Article and Find Full Text PDF

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Cortical Acetylcholine Response to Deep Brain Stimulation of the Basal Forebrain in Mice.

J Neurophysiol

January 2025

Dept of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.

Deep brain stimulation (DBS) using electrical stimulation of neuronal tissue in the basal forebrain to enhance release of the neurotransmitter acetylcholine is under consideration to improve executive function in patients with dementia. While some small studies indicate a positive response in the clinical setting, the relationship between DBS and acetylcholine pharmacokinetics is incompletely understood. We examined the cortical acetylcholine response to different stimulation parameters of the basal forebrain.

View Article and Find Full Text PDF

The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters within individual neuron represent a fundamental characteristic observed across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we develop a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!