Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2).

Brain Res Mol Brain Res

Department of Anesthesia and Perioperative Care, University of California, San Francisco, 513 Parnassus Ave., Room S-261, Box 0542, San Francisco, CA 94143, USA.

Published: September 2004

The TWIK-related, Acid Sensing K (TASK-2; KCNK5) potassium channel is a member of the tandem pore (2P) family of potassium channels and mediates an alkaline pH-activated, acid pH-inhibited, outward-rectified potassium conductance. In previous work, we demonstrated TASK-2 protein expression in newborn rat cerebellar granule neurons (CGNs). In this study, we demonstrate TASK-2 functional expression in CGNs as a component of the pH-sensitive, volatile anesthetic-potentiated, standing-outward potassium conductance (I(K,SO)). Using excised, inside-out patch-clamp technique, we studied CGNs grown in primary culture. We identified four distinct, noninactivating single channel potassium conductances, Types 1-4. Types 1-3 have previously been attributed to TASK-1 (KCNK3), TASK-3 (KCNK9) and TASK-1/TASK-3 heteromers, and TREK-2 (KCNK10) 2P potassium channel function, respectively; however, the Type 4 conductance is currently unassigned. Previous studies demonstrated that Type 4 single channel activity is potentiated by extracellular, alkaline pH and cytoplasmic arachidonic acid (10-20 microM) and inhibited by cytoplasmic tetraethylammonium (TEA; 1 mM). We determined that heterologously expressed TASK-2 channels have single channel gating, conductance properties and pH sensitivity identical to the Type 4 conductance. Additionally, we found that TASK-2 single channel activity, like the Type 4 conductance is potentiated by cytoplasmic arachidonic acid (20 microM) and inhibited by cytoplasmic TEA (1 mM). We conclude that TASK-2 mediates the Type 4 single channel conductance in CGNs as a component of I(K,SO).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbrainres.2004.06.007DOI Listing

Publication Analysis

Top Keywords

single channel
20
type conductance
12
rat cerebellar
8
cerebellar granule
8
channel
8
potassium channel
8
potassium conductance
8
cgns component
8
type single
8
channel activity
8

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Web Real-Time Communications-Based Unmanned-Aerial-Vehicle-Borne Internet of Things and Stringent Time Sensitivity: A Case Study.

Sensors (Basel)

January 2025

Institute of Telecommunications, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classical transport solutions are not able to achieve end-to-end delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as a potential solution to this problem.

View Article and Find Full Text PDF

Feasibility Study on Additive Manufacturing of Feed Horn Operating in D-Band.

Sensors (Basel)

January 2025

Department of Management and Production Engineering (DIGEP), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

This paper presents the outcomes of a feasibility study on the manufacturing of D-band horn antennas through the Low Power Bed Fusion process. Different prototypes have been realized and tested, showing nice results in terms of the co-polarization component. On the other hand, a spurious cross-polarization component is present in the radiation pattern even in the principal planes, limiting the device to single-polarization applications.

View Article and Find Full Text PDF

Gesture recognition technology based on millimeter-wave radar can recognize and classify user gestures in non-contact scenarios. To address the complexity of data processing with multi-feature inputs in neural networks and the poor recognition performance with single-feature inputs, this paper proposes a gesture recognition algorithm based on esNet ong Short-Term Memory with an ttention Mechanism (RLA). In the aspect of signal processing in RLA, a range-Doppler map is obtained through the extraction of the range and velocity features in the original mmWave radar signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!