Spatial composition of prostate cancer spheroids in mixed and static cultures.

Tissue Eng

Chemical and Biomolecular Engineering Department, Tulane University, New Orleans, Louisiana, USA.

Published: March 2005

Aggregation of neoplastic cells produces multicellular spheroids resembling micrometastases. The objective of this study was to investigate the effects of mixing culture medium on the spatial composition of spheroids prepared from well (LNCaP) and poorly (DU 145) differentiated human prostate cancer cells. Spheroids were cultured in a mixed suspension within a high-aspect rotating wall vessel and static liquid-overlay plate. Results from this study demonstrate that mixed cultures consistently manifested differences in morphology and composition between DU 145 and LNCaP spheroids. For example, 40 +/- 12% of DU 145 cells were Ki-67 positive 100 microm from the surface within mixed spheroids versus 0% for LNCaP cells; there was no significant difference in this spatial profile for static cultures. The results suggest that poorly differentiated spheroids may be more likely to experience a change in composition from mixing culture medium than well-differentiated spheroids, due to low tissue density. Immunostaining for P-glycoprotein is representative of this trend; average staining intensity increased 50% for DU 145 spheroids on mixing but was unchanged for LNCaP spheroids. The effects of mixing on spheroid composition were attributed to faster interstitial mass transport. Applications include drug development and delivery, as well as basic research on drug action and resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2004.10.1266DOI Listing

Publication Analysis

Top Keywords

spheroids
10
spatial composition
8
prostate cancer
8
static cultures
8
effects mixing
8
mixing culture
8
culture medium
8
lncap spheroids
8
composition prostate
4
cancer spheroids
4

Similar Publications

A Hydrogel-Based Multiplex Coculture Platform for Retinal Component Cells.

ACS Appl Bio Mater

January 2025

Koç University Translational Medicine Research Center, Koç University, Istanbul 34450, Turkey.

There is growing interest in generating in vitro models of tissues and tissue-related diseases to mimic normal tissue organization and pathogenesis for different purposes. The retina is a highly complex multicellular tissue where the organization of the cellular components relative to each other is critical for retinal function. Many retinopathies arise due to the disruption of this order.

View Article and Find Full Text PDF

Smart Polymeric 3D Microscaffolds Hosting Spheroids for Neuronal Research via Quantum Metrology.

Adv Healthc Mater

January 2025

INL - International Iberian Nanotechnology Laboratory, Ultrafast Bio- and Nanophotonics group, Av. Mestre José Veiga s/n, Braga, 4715-330, Portugal.

Toward the aim of reducing animal testing, innovative in vitro models are required. Here, this study proposes a novel smart polymeric microscaffold to establish an advanced 3D model of dopaminergic neurons. These scaffolds are fabricated with Ormocomp via Two-Photon Polymerization.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

The emerging field of 3D organ modeling encounters several imaging issues in particular related to antigen retrieval and sample loss during staining processes. Due to their compact shape, several antibodies fail to penetrate intact organoids or spheroids. Histology of organoids can be approached by paraffin inclusion and sectioning at 5 μm as performed for biopsies.

View Article and Find Full Text PDF

FOXJ3, a novel tumor suppressor in neuroblastoma.

Mol Ther Oncol

March 2025

School of Interdisciplinary Informatics, University of Nebraska Omaha, 1110 South 67th Street, Omaha, NE 68182, USA.

Neuroblastoma (NB) poses a significant challenge in pediatric cancer care due to its aggressive nature and poor prognosis. While advances have been made in clinical treatments, therapy resistance remains a tough hurdle in NB treatment. While much research has focused on identifying oncogenes in NB, there has been less emphasis on understanding tumor suppressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!