Skipping the co-expression problem: the new 2A "CHYSEL" technology.

Genet Vaccines Ther

Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St, Andrews, North Haugh, St, Andrews KY16 9ST, Scotland, UK.

Published: September 2004

AI Article Synopsis

  • The advancement in genomics is enhancing our understanding of multi-gene diseases, but effective gene therapy requires the ability to co-express multiple genes.
  • Researchers are currently using internal ribosomal entry sites (IRESs) for this purpose, but their large size and inconsistencies in expression have led to exploring alternative methods, like polyprotein expression.
  • The FMDV 2A peptide is emerging as a promising solution, allowing for the autonomous processing of polyproteins, enabling the co-expression of multiple proteins from a single viral vector, thus aiding in various biological applications.

Article Abstract

The rapid progress in the field of genomics is increasing our knowledge of multi-gene diseases. However, any realistic hope of gene therapy treatment for those diseases needs first to address the problem of co-ordinately co-expressing several transgenes. Currently, the use of internal ribosomal entry sites (IRESs) is the strategy chosen by many researchers to ensure co-expression. The large sizes of the IRESs (~0.5 kb), and the difficulties of ensuring a well-balanced co-expression, have prompted several researchers to imitate a co-expression strategy used by many viruses: to express several proteins as a polyprotein. A small peptide of 18 amino acids (2A) from the foot-and-mouth disease virus (FMDV) is being used to avoid the need of proteinases to process the polyprotein. FMDV 2A is introduced as a linker between two proteins to allow autonomous intra-ribosomal self-processing of polyproteins. Recent reports have shown that this sequence is compatible with different sub-cellular targeting signals and can be used to co-express up to four proteins from a single retroviral vector. This short peptide provides a tool to allow the co-expression of multiple proteins from a single vector, a useful technology for those working with heteromultimeric proteins, biochemical pathways or combined/synergistic phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC521497PMC
http://dx.doi.org/10.1186/1479-0556-2-13DOI Listing

Publication Analysis

Top Keywords

proteins single
8
proteins
5
skipping co-expression
4
co-expression problem
4
problem "chysel"
4
"chysel" technology
4
technology rapid
4
rapid progress
4
progress field
4
field genomics
4

Similar Publications

Genetically encoded tension sensors (GETSs) allow for quantifying forces experienced by intracellular proteins involved in mechanotransduction. The vast majority of GETSs are comprised of a FRET pair flanking an elastic "spring-like" domain that gradually extends in response to force. Because of ensemble averaging, the FRET signal generated by such analog sensors conceals forces that deviate from the average, and hence it is unknown if a subset of proteins experience greater magnitudes of force.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Molecular Determinants of Protein Pathogenicity at the Single-Aggregate Level.

Adv Sci (Weinh)

January 2025

Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.

Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

As part of an ongoing effort to generate comprehensive resources for the experimental analysis of fourth chromosome genes in Drosophila melanogaster, the Fourth Chromosome Resource Project has used CRISPR mutagenesis with single guide RNAs to isolate mutations in 62 of the 80 fourth chromosome, protein-coding genes. These mutations were induced on a fourth chromosome bearing a basal FRT insertion to facilitate experimental approaches involving FLP recombinase-induced mitotic recombination. To permit straightforward comparisons among mutant stocks, most of the mutations were generated on isogenic fourth chromosomes, which were then crossed into a common genetic background.

View Article and Find Full Text PDF

Objectives: This study examined the correlation between circulating receptor activator for nuclear factor-κB ligand (RANKL) levels and rheumatoid arthritis (RA), and investigated the association between polymorphisms in the RANKL gene and susceptibility to RA.

Method: We searched the Medline, Embase, and Cochrane databases for relevant publications up to September 2024. A meta-analysis was conducted to assess serum/plasma RANKL levels in patients with RA and controls, and to explore the relationship between RANKL rs9533156 and rs2277438 polymorphisms and RA susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!