Human small fragment nuclease (Sfn) is one of the cellular proteins that were reported to degrade small, single-stranded DNA and RNA. However, the biological role of Sfn in cellular response to various stressors such as UV-C (mainly 254 nm wavelength ultraviolet ray) remains unclear. We have examined whether modulation of human SFN gene expression affects cell survival capacity against UV-C-induced cell death, analyzing colony survival ability in UV-C-sensitive human RSa cells treated with short double-stranded RNA (siRNA) specific for SFN messenger RNA (mRNA). The expression levels of SFN mRNA in the siRNA-treated RSa cells decreased to about 15% compared with those in the control siRNA-treated cells. The siRNA-treated RSa cells showed lower colony survival and higher activity of caspase-3 after UV-C irradiation than the control siRNA-treated RSa cells. Furthermore, the removal capacity of cyclobutane pyrimidine dimers (CPD) in the siRNA-treated RSa cells decreased compared with the control siRNA-treated RSa cells. There was no difference in the colony survival and CPD removal capacity after UV-C irradiation between the control siRNA-treated RSa cells and mock-treated RSa cells. These results suggest that SFN expression is involved in resistance of RSa cells to UV-C-induced cell death through the roles it plays in the DNA repair process.

Download full-text PDF

Source
http://dx.doi.org/10.1562/2004-01-21-RA-051DOI Listing

Publication Analysis

Top Keywords

rsa cells
36
sirna-treated rsa
24
control sirna-treated
16
uv-c-induced cell
12
cell death
12
colony survival
12
cells
11
rsa
9
human small
8
small fragment
8

Similar Publications

A root system architecture regulator modulates OsPIN2 polar localization in rice.

Nat Commun

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.

Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).

View Article and Find Full Text PDF

AMPK-mTOR pathway modulates glycolysis reprogramming in unexplained recurrent spontaneous abortion.

BMC Pregnancy Childbirth

December 2024

Department of Obstetrics and Gynecology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, P.R. China.

Background: Recurrent spontaneous abortion (RSA), whose underlying cause has yet to be fully elucidated, is often classified as unexplained recurrent spontaneous abortion (URSA). Promoting the differentiation of CD4 T cells into Tregs may be the key to prevent URSA. The differentiation of CD4 T cells was controlled by mTOR, but the regulatory mechanism is still unclear.

View Article and Find Full Text PDF

Central nervous system vascularization in human embryos and neural organoids.

Cell Rep

December 2024

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Article Synopsis
  • Neural organoids from human pluripotent stem cells are emerging as powerful tools for exploring CNS development, disease, and drug interactions.
  • Despite their promise, many studies on CNS organoids lack effective blood vessel systems, limiting their applicability.
  • The review examines current knowledge on vascular development in various CNS regions and emphasizes the need for bioengineering advancements to create more functional vascularized organoid models for research purposes.
View Article and Find Full Text PDF

The circRNA Landscape in Recurrent Pregnacy Loss (RPL): A Comparison of Four Reproductive Tissues.

Int J Mol Sci

November 2024

Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena auzoa, 48940 Leioa, Spain.

Recurrent Pregnancy Loss (RPL), also named Recurrent Spontaneous Abortion (RSA), is a common fertility problem that refers to at least two consecutive pregnancy losses and affects 1-2% of couples all over the world. Despite common causes such as genetic abnormalities, uterine anomalies or hormonal and metabolic disorders, there is still a huge challenge in identifying the causes of about 40-60% of RPL patients. Circular RNAs (circRNAs) are endogenous ncRNAs with a unique closed-loop and single-stranded structure.

View Article and Find Full Text PDF

Background: Mothers experiencing recurrent spontaneous abortion (RSA) along with repeated implantation failures (RIF) could potentially have abnormalities in their immune systems. Vitamin D is known as a crucial immunomodulatory agent. This study aimed to assess the ratio of Natural Killer T-cells (NKTs) and the correlation between this ratio with serum vitamin D levels among women with RSA and RIF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!