Sequestration of nickel and copper by Azotobacter chroococcum SB1.

Bull Environ Contam Toxicol

Applied Biochemistry Laboratory, School of Biosciences, Mahatma Gandhi University, Kottayam, PIN-686560, Kerala, India.

Published: June 2004

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-004-0360-xDOI Listing

Publication Analysis

Top Keywords

sequestration nickel
4
nickel copper
4
copper azotobacter
4
azotobacter chroococcum
4
chroococcum sb1
4
sequestration
1
copper
1
azotobacter
1
chroococcum
1
sb1
1

Similar Publications

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF
Article Synopsis
  • - The study evaluates the safety of using thermochemically treated sewage sludge from a distillery's wastewater treatment plant as a soil additive by examining its physicochemical properties and the bioaccumulation of heavy metals in maize.
  • - Pyrolysis at 400 °C alters the sludge's characteristics positively, increasing pH, carbon, nitrogen, and ash content, while reducing electrical conductivity, cation exchange capacity, and harmful polycyclic aromatic hydrocarbons.
  • - Results show that adding 1% biochar from the treated sludge improves soil properties and doesn't enhance heavy metal uptake in maize or affect cress seed germination, though it does impact the soil's microbial community.
View Article and Find Full Text PDF
Article Synopsis
  • Metal toxicity impacts plant physiology, and mycorrhizal fungi (AMF) offer a new eco-friendly method to improve soil contaminated by tannery effluents, which are high in harmful metals like chromium and cadmium.* -
  • A study was conducted using vetiver grass and three strains of AMF on contaminated soil from Tamil Nadu, revealing that AMF inoculation, particularly with R. intraradices, boosted plant growth and biomass significantly compared to other treatments.* -
  • Results indicated that R. intraradices improved the phytoextraction of metals, reduced their movement into plant shoots, and increased carbon storage in vetiver, enhancing overall carbon sequestration in contaminated soil.*
View Article and Find Full Text PDF
Article Synopsis
  • - The study introduces Bacillus enclensis AGM_Cr8, a marine bacterium found in polluted Versova Creek, Mumbai, that displays significant tolerance to chromate stress and other heavy metals such as lead and arsenic.
  • - Various microscopic techniques show how AGM_Cr8 absorbs chromate, with evidence of both surface interaction and internal bioaccumulation, suggesting a bioreduction mechanism that converts harmful Cr(VI) into less toxic Cr(III).
  • - Genome sequencing reveals twenty-two genes related to chromate tolerance and detoxification processes, indicating AGM_Cr8's potential for bioremediation of chromium contamination in the environment.
View Article and Find Full Text PDF
Article Synopsis
  • The article with DOI: 10.1039/D3NA00923H has been formally retracted.
  • This means that the findings or claims made in the article are no longer considered valid.
  • Retraction can occur due to issues like errors, misconduct, or ethical breaches in the research process.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!