Dopamine D2 receptor interactions with arrestins and arrestin-dependent internalization have been characterized using heterologously expressed D2 receptor and arrestins. The purpose of this study was to investigate D2 receptor interaction with endogenous arrestins. Arrestin2 and arrestin3 in striatal homogenates bound to the third cytoplasmic loop of the D2 receptor, and purified arrestin2 and arrestin3 bound to the second and third loops and C terminus of the D2 receptor, in a glutathione S-transferase pull-down assay. In NS20Y neuroblastoma cells expressing an enhanced green-fluorescent protein-tagged D2 receptor (D2-EGFP), 2-h D2 agonist stimulation enhanced the colocalization of D2-EGFP with endogenous arrestin2 and arrestin3. These results suggest that the D2 receptor has the intrinsic ability to bind both nonvisual arrestins. Agonist treatment of D2-EGFP NS20Y cells induced D2 receptor internalization (36-46%) that was maximal within 20 min, but that was prevented by small interfering RNA-induced depletion of arrestin2 and arrestin3. In neostriatal neurons, 2-h agonist treatment selectively increased the colocalization of the endogenous D2 receptor with arrestin2, whereas receptor colocalization with arrestin3 was reduced. Agonist stimulation caused translocation of arrestin2, but not arrestin3, to the membrane in neurons and selectively enhanced the coimmunoprecipitation of the D2 receptor and arrestin2. All three measures of receptor/arrestin interaction (colocalization, translocation, and coprecipitation) demonstrated selective agonist-induced interaction between the D2 receptor and arrestin2 in neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.104.001495 | DOI Listing |
Biochem Pharmacol
June 2024
Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. Electronic address:
Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction.
View Article and Find Full Text PDFBiomol Ther (Seoul)
January 2024
Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D receptor (DR) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (DG and DArr, respectively).
View Article and Find Full Text PDFCells
June 2023
Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates.
View Article and Find Full Text PDFMol Cell
June 2023
Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056 Basel, Switzerland. Electronic address:
The two non-visual arrestins, arrestin2 and arrestin3, bind hundreds of GPCRs with different phosphorylation patterns, leading to distinct functional outcomes. Structural information on these interactions is available only for very few GPCRs. Here, we have characterized the interactions between the phosphorylated human CC chemokine receptor 5 (CCR5) and arrestin2.
View Article and Find Full Text PDFbioRxiv
May 2023
Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
Arrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!