In sympathetic neurons, C6-ceramide, as well as endogenous ceramides, blocks apoptosis elicited by NGF (nerve growth factor) deprivation. The mechanism(s) involved in ceramide-induced neuronal survival are poorly understood. Few direct targets for the diverse cellular effects of ceramide have been identified. Amongst those proposed is PP-1c, the catalytic subunit of serine/threonine PP-1 (protein phosphatase-1). Here, we present the first evidence of PP-1c activation by ceramide in live cells, namely NGF-deprived sympathetic neurons. We first determined PP activity in cellular lysates from sympathetic neurons treated with exogenous ceramide and demonstrated a 2-3-fold increase in PP activity. PP activation was completely blocked by the addition of the specific type-1 PP inhibitor protein I-2 as well as by tautomycin, but unaffected by 2 nM okadaic acid, strongly indicating that the ceramide-activated phosphatase activity was PP-1c. Inhibition of PP activity by phosphatidic acid (which has been reported to be a selective inhibitor of PP-1c) and tautomycin (a PP-1 and PP-2A inhibitor), but not by 10 nM okadaic acid, abolished the anti-apoptotic effect of ceramide in NGF-deprived neurons, suggesting that activation of PP-1c is required for ceramide-induced neuronal survival. Ceramide was able to prevent pRb (retinoblastoma gene product) hyperphosphorylation by a mechanism dependent on PP-1c activation, suggesting that two consequences of NGF deprivation in sympathetic neurons are inhibition of PP-1c and subsequent hyperphosphorylation of pRb protein. These findings suggest a novel mechanism for ceramide-induced survival, and implicate the involvement of PPs in apoptosis induced by NGF deprivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134743PMC
http://dx.doi.org/10.1042/BJ20040929DOI Listing

Publication Analysis

Top Keywords

sympathetic neurons
20
protein phosphatase-1
8
required ceramide-induced
8
ceramide-induced survival
8
ceramide-induced neuronal
8
neuronal survival
8
pp-1c activation
8
okadaic acid
8
ngf deprivation
8
pp-1c
7

Similar Publications

Left superior cervical ganglia lymph node mimicry and its role in rat ventricular arrhythmias following myocardial infarction.

Acta Physiol (Oxf)

February 2025

Department of Cardiology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.

Aim: Sympathetic overactivation may lead to severe ventricular arrhythmias (VAs) post-myocardial infarction (MI). The superior cervical ganglion (SCG) is an extracardiac sympathetic ganglion which regulates cardiac autonomic tone. We aimed to investigate the characteristics and functional significance of SCG on neuro-cardiac communication post-MI.

View Article and Find Full Text PDF

Ropivacaine and celecoxib-loaded injectable composite hydrogel for improved chronic pain-exacerbated myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:

Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.

View Article and Find Full Text PDF

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

Paroxysmal sympathetic hyperactivity: A common consequence of traumatic brain injury.

Auton Neurosci

January 2025

Department of Medicine, Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi, Pakistan. Electronic address:

Paroxysmal Sympathetic Hyperactivity (PSH) is a challenging and often underrecognized syndrome, commonly arising after a traumatic brain injury (TBI). Characterized by episodic bursts of heightened sympathetic activity, PSH presents with a distinct constellation of symptoms including hypertension, tachycardia, hyperthermia, and diaphoresis. While the exact pathophysiology remains elusive, current evidence suggests that the syndrome results from an imbalance between excitatory and inhibitory neuronal pathways within the central nervous system, leading to dysregulated autonomic responses.

View Article and Find Full Text PDF

[Effect of somatic afferent nerve-visceral nerve circuit in the regulation of the gastrointestinal function with acupuncture and moxibustion].

Zhongguo Zhen Jiu

January 2025

Institute of Acupuncture and Moxibustion, Shandong University of TCM, Jinan 250355, China; Institute of Systematic Chinese Medicine, Shandong University of TCM, Jinan 250355, China.

The distribution of the common acupoints of acupuncture-moxibustion for gastrointestinal diseases conforms to the rule of the segmental homology of somatic afferent nerve-visceral nerve circuit at the spinal cord level. Acupuncture-moxibustion regulates the gastrointestinal function through the nerve-endocrine-immune system, and especially depending on the integrity of the structure and function of nervous system. The somatic afferent nerve-visceral nerve circuit plays an important role in the process of acupuncture and moxibustion for regulating the gastrointestinal function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!