Immobilization of rennet from Mucor miehei via its sugar chain. Its use in milk coagulation.

Biomacromolecules

Departamento de Biocatálisis, Instituto de Catálisis-CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.

Published: February 2005

A successful strategy for the immobilization of rennet from Mucor miehei has been developed. The strategy is based on the immobilization of the enzyme, via their sugar chains at high ionic strength on aminated supports having primary amino groups with a very low pK value. The rennet was covalently immobilized via sugar chains (previously oxidized with periodate), which act as natural spacer arms and allow a very high percentage of rennet activity to be kept against small (H-Leu-Ser-p-nitro-Phe-Nle-Ala-Leu-OMe.TFA (98%)) and macromolecular substrates (k-casein) (78%). The use of tailor-made aminated support was critical to obtain good stability values, because using fully aminated supports achieved much lower thermostability values than using 50% aminated supports. The optimized derivative was utilized to hydrolyze casein in milk. To prevent the coagulation of the milk in the presence of the derivative, the reaction was performed at 4 degrees C (where hydrolyzed casein did not precipitate). Then the hydrolyzed milk was filtered and latter on heated to 30 degrees C, achieving a similar aggregate to the one achieved with soluble rennet.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm049735cDOI Listing

Publication Analysis

Top Keywords

aminated supports
12
immobilization rennet
8
rennet mucor
8
mucor miehei
8
sugar chains
8
miehei sugar
4
sugar chain
4
milk
4
chain milk
4
milk coagulation
4

Similar Publications

Evaluating Avacopan in the Treatment of ANCA-Associated Vasculitis: Design, Development and Positioning of Therapy.

Drug Des Devel Ther

January 2025

Center of Expertise for Lupus-, Vasculitis- and Complement-Mediated Systemic Diseases (Luvacs), Department of Internal Medicine - Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands.

Recently, avacopan has been approved for the treatment of ANCA-associated vasculitis (AAV). Avacopan is an inhibitor of the C5a-receptor, which plays an important role in chemotaxis and the amplification loop of inflammation in AAV. In the most recent, international guidelines avacopan is recommended as steroid-sparing agents for the management of AAV.

View Article and Find Full Text PDF

The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.

View Article and Find Full Text PDF

Background: Depression is a common comorbidity in patients with Parkinson's disease (PD) and can significantly impact their overall well-being. The combination of venlafaxine and pramipexole is a standard treatment approach for depression in PD. However, the effects of incorporating psychological care into the treatment regimen remain unclear.

View Article and Find Full Text PDF

Efficient amine-assisted CO hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.

Nat Commun

January 2025

Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.

Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!