Reduced bio-basis function neural networks for protease cleavage site prediction.

J Bioinform Comput Biol

Department of Computer Science, Exeter University, Exeter EX4 4QF, UK.

Published: September 2004

This paper presents a new neural learning algorithm for protease cleavage site prediction. The basic idea is to replace the radial basis function used in radial basis function neural networks by a so-called bio-basis function using amino acid similarity matrices. Mutual information is used to select bio-bases and a corresponding selection algorithm is developed. The algorithm has been applied to the prediction of HIV and Hepatitis C virus protease cleavage sites in proteins with success.

Download full-text PDF

Source
http://dx.doi.org/10.1142/s0219720004000715DOI Listing

Publication Analysis

Top Keywords

protease cleavage
12
bio-basis function
8
function neural
8
neural networks
8
cleavage site
8
site prediction
8
radial basis
8
basis function
8
reduced bio-basis
4
function
4

Similar Publications

Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.

View Article and Find Full Text PDF

Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.

View Article and Find Full Text PDF

Serious issues with cryo-EM structures of human prothrombinase.

Open Biol

January 2025

Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Hills Road , Cambridge CB2 0XY, UK.

Thrombin is generated from prothrombin through sequential cleavage at two sites by the enzyme complex prothrombinase, composed of a serine protease, factor (f) Xa and a cofactor, fVa, on phospholipid membranes. In a recent paper published in , Ruben . (Ruben .

View Article and Find Full Text PDF

Positively charged cytoplasmic residues in corin prevent signal peptidase cleavage and endoplasmic reticulum retention.

Commun Biol

January 2025

Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, 215123, China.

Positively charged residues are commonly located near the cytoplasm-membrane interface, which is known as the positive-inside rule in membrane topology. The mechanism underlying the function of these charged residues remains poorly understood. Herein, we studied the function of cytoplasmic residues in corin, a type II transmembrane serine protease in cardiovascular biology.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!