Chronic administration of statins alters multiple gene expression patterns in mouse cerebral cortex.

J Pharmacol Exp Ther

Department of Pharmacology, University of Minnesota School of Medicine and Geriatric Research, VA Medical Center, One Veterans Drive, GRECC 11G, Minneapolis, MN 55417, USA.

Published: February 2005

Statins have been reported to lower the risk of developing Alzheimer's disease; however, the mechanism of this potentially important neuroprotective action is not understood. Lowering cholesterol levels does not appear to be the primary mechanism. Statins have pleiotropic effects in addition to lowering cholesterol, and statins may act on several different pathways involving distinct gene expression patterns that would be difficult to determine by focusing on a few genes or their products in a single study. In addition, gene expression patterns may be specific to a particular statin. To understand the molecular targets of statins in brain, DNA microarrays were used to identify gene expression patterns in the cerebral cortex of mice chronically treated with lovastatin, pravastatin, and simvastatin. Furthermore, brain statin levels were determined using liquid chromatography/tandem mass spectrometry. These studies revealed 15 genes involved in cell growth and signaling and trafficking that were similarly changed by all three statins. Overall, simvastatin had the greatest influence on expression as demonstrated by its ability to modify the expression of 23 genes in addition to those changed by all three drugs. Of particular interest was the expression of genes associated with apoptotic pathways that were altered by simvastatin. Reverse transcription-polymerase chain reaction experiments confirmed the microarray findings. All three drugs were detected in the cerebral cortex, and acute experiments revealed that statins are relatively rapidly removed from the brain. These results provide new insight into possible mechanisms for the potential efficacy of statins in reducing the risk of Alzheimer's disease and lay the foundation for future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.104.075028DOI Listing

Publication Analysis

Top Keywords

gene expression
16
expression patterns
16
cerebral cortex
12
statins
8
alzheimer's disease
8
lowering cholesterol
8
changed three
8
expression genes
8
three drugs
8
expression
7

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!