The phenomenon of destruction of silica fiber cladding by the fiber fuse effect has been observed for the first time to the authors' knowledge. Experiments on the optical discharge propagation along a fiber were conducted with fibers of decreased cladding thickness. The destruction of fiber cladding led to expansion of the optical discharge plasma and to a decrease of its density. This resulted in the termination of optical discharge propagation. The section of a fiber with decreased cladding thickness can act as a safety device to halt damage propagation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.29.001852 | DOI Listing |
Sci Rep
January 2025
Department of Physics, Shiraz university of technology, Shiraz, Iran.
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.
View Article and Find Full Text PDFDynamic transverse mode instability (TMI) has become one of the primary limitations for power scaling of high-power fiber lasers. Experimental evidence has shown that static mode degradation can suppress the dynamic TMI effect. This study reveals the physical mechanisms behind the mitigation of dynamic TMI in two-mode fiber lasers through static mode degradation.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
This article proposes a novel biosensor based on a five-semi-circular cladding tube hollow core antiresonant fiber (HC-ARF) with a frequency range of 0.5-2.8 THz, using Zeonex as the background material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
The advancement of underwater monitoring technologies has been significantly hampered by the limitations of traditional electrical sensors, particularly in the presence of electromagnetic interference and safety concerns in aquatic environments. Fiber optic sensors are therefore nowadays widely applied to underwater monitoring devices. However, silicon- and polymer-based optical fibers often face challenges, such as rigidity, susceptibility to environmental stress, and limited operational flexibility.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The AC magnetic field response of the superparamagnetic nano-ferrofluid is an interplay between the Neel and Brownian relaxation processes and is generally quantified via the susceptibility measurements at high frequencies. The high frequency limit is dictated by these relaxation times which need to be shorter than the time scale of the time varying magnetic field for the nano-ferrofluid to be considered in an equilibrium state at each time instant. Even though the high frequency response of ferrofluid has been extensively investigated for frequencies up to GHz range by non-optical methods, harnessing dynamic response by optical means for AC magnetic field sensing in fiber-optic-based sensors-field remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!