The preparation, structural characterization and magnetic properties of three solvent adducts of VOCl(2), trans-VOCl(2)(THF)(2)(H(2)O) (1), trans-VOCl(2)(H(2)O)(2).2Et(2)O (2) and cis-VOCl(2)(MeOH)(3) (3) are described. In these solids, hydrogen bonding among the inorganic complexes is the critical determinant of the formation of extended magnetic networks. Compound forms one-dimensional double chains where alternating monomers from the two branches of the chain are hydrogen bonded via the V-Cl ... H-O-V network (with an axial water molecule and equatorial chloride ions). Magnetic studies indicate no interaction among the vanadyl centers. The paramagnetism of 1 is consistent with the extension of the network from the hydrogen donor site of the axial water, which is orthogonal to the d(xy) magnetic orbital. Compound 2 forms one-dimensional chains with water molecules of adjacent monomers held together by hydrogen bonds to ether molecules (V-O-H ... O(ether) ... H -O-V). The chain network radiates only through the equatorial plane of the complex where the water molecules are located. The presence of the intervening solvent molecule between hydrogen bonds of the primary coordination sphere magnetically insulates metal centers and compound is also a simple paramagnet. Removal of the solvent turns on the magnetic interaction and neighboring spin centers couple antiferromagnetically. Compound 3 forms a layered structure via V-Cl ... H-O-V hydrogen bonding, where all the hydrogen donor sites participate in the formation of the network. The vanadyl spin centers, at distances of 5.5 and 6.5 A from each other, couple antiferromagnetically (J/k=-0.7 K). Thus, magnetic coupling among metal centers is achieved when the hydrogen bond network directly radiates from the coordination plane containing the magnetic orbital. These results further support the utility of hydrogen bond as a viable design element in the construction of low dimensional, magnetic solids.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b309432dDOI Listing

Publication Analysis

Top Keywords

compound forms
12
hydrogen
9
magnetic properties
8
magnetic
8
hydrogen bonding
8
forms one-dimensional
8
v-cl h-o-v
8
axial water
8
hydrogen donor
8
magnetic orbital
8

Similar Publications

Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.

View Article and Find Full Text PDF

White light-emitting electrochemical cells based on metal-free TADF emitters.

Nat Commun

January 2025

The Organic Photonics and Electronics Group, Department of Physics, Umeå University, Umeå, Sweden.

The attainment of white emission from a light-emitting electrochemical cell (LEC) is important, since it enables illumination and facile color conversion from devices that can be cost-efficient and sustainable. However, a drawback with current white LECs is that they either employ non-sustainable metals as an emitter constituent or are intrinsically efficiency limited by that the emitter only converts singlet excitons to photons. Organic compounds that emit by thermally activated delayed fluorescence (TADF) can address these issues since they can harvest all excitons for light emission while being metal free.

View Article and Find Full Text PDF

ZBP1-driven cell death in severe influenza.

Trends Microbiol

January 2025

Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity.

View Article and Find Full Text PDF

Transcription factors play a crucial role in the biosynthesis of tanshinones, which are significant secondary metabolites derived from Salvia miltiorrhiza, commonly known as Danshen. These compounds have extensive pharmacological properties, including anti-inflammatory and cardioprotective effects. This review delves into the roles of various transcription factor families, such as APETALA2/ethylene response factor, basic helix-loop-helix, myeloblastosis, basic leucine zipper, and WRKY domain-binding protein, in regulating the biosynthetic pathways of tanshinones.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!