Enzyme activities and arylsulfatase protein content of dust and the soil source: biochemical fingerprints?

J Environ Qual

USDA-ARS, Plant Stress and Water Conservation Laboratory, 3810 Fourth Street, Lubbock, TX 79416, USA.

Published: December 2004

Little is known about the potential of enzyme activities, which are sensitive to soil properties and management, for the characterization of dust properties. Enzyme activities may be among the dust properties key to identifying the soil source of dust. We generated dust (27 and 7 microm) under controlled laboratory conditions from agricultural soils (0-5 cm) with history of continuous cotton (Gossypium hirsutum L.) or cotton rotated with peanut (Arachis hypogaea L.), sorghum [Sorghum bicolor (L.) Moench], rye (Secale cereale L.), or wheat (Triticum aestivum L.) under different water management (irrigated or dryland) and tillage (conservation or conventional) systems. The 27- and 7-microm dust samples showed activities of beta-glucosidase, alkaline phosphatase, and arylsulfatase, which are related to cellulose degradation and phosphorus and sulfur mineralization in soil, respectively. Dust samples generated from a loam and sandy clay loam showed higher enzyme activities compared with dust samples from a fine sandy loam. Enzyme activities of dust samples were significantly correlated to the activities of the soil source with r > 0.74 (P < 0.01). The arylsulfatase proteins contents of the soils (0.04-0.65 mg protein kg(-1) soil) were lower than values reported for soils from other regions, but still dust contained arylsulfatase protein. The three enzyme activities studied, as a group, separated the dust samples due to the crop rotation or tillage practice history of the soil source. The results indicated that the enzyme activities of dust will aid in providing better characterization of dust properties and expanding our understanding of soil and air quality impacts related to wind erosion.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2004.1653DOI Listing

Publication Analysis

Top Keywords

enzyme activities
28
dust samples
20
soil source
16
dust
13
dust properties
12
activities dust
12
arylsulfatase protein
8
soil
8
activities
8
characterization dust
8

Similar Publications

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.

View Article and Find Full Text PDF

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!