Neurons of the hypothalamic paraventricular nucleus (PVN) are key controllers of sympathetic nerve activity and receive input from angiotensin II (ANG II)-containing neurons in the forebrain. This study determined the effect of ANG II on PVN neurons that innervate in the rostral ventrolateral medulla (RVLM)-a brain stem site critical for maintaining sympathetic outflow and arterial pressure. Using an in vitro brain slice preparation, whole cell patch-clamp recordings were made from PVN neurons retrogradely labeled from the ipsilateral RVLM of rats. Of 71 neurons tested, 62 (87%) responded to ANG II. In current-clamp mode, bath-applied ANG II (2 muM) significantly (P < 0.05) depolarized membrane potential from -58.5 +/- 2.5 to -54.5 +/- 2.0 mV and increased the frequency of action potential discharge from 0.7 +/- 0.3 to 2.8 +/- 0.8 Hz (n = 4). Local application of ANG II by low-pressure ejection from a glass pipette (2 pmol, 0.4 nl, 5 s) also elicited rapid and reproducible excitation in 17 of 20 cells. In this group, membrane potential depolarization averaged 21.5 +/- 4.1 mV, and spike activity increased from 0.7 +/- 0.4 to 21.3 +/- 3.3 Hz. In voltage-clamp mode, 41 of 47 neurons responded to pressure-ejected ANG II with a dose-dependent inward current that averaged -54.7 +/- 3.9 pA at a maximally effective dose of 2.0 pmol. Blockade of ANG II AT1 receptors significantly reduced discharge (P < 0.001, n = 5), depolarization (P < 0.05, n = 3), and inward current (P < 0.01, n = 11) responses to locally applied ANG II. In six of six cells tested, membrane input conductance increased (P < 0.001) during local application of ANG II (2 pmol), suggesting influx of cations. The ANG II current reversed polarity at +2.2 +/- 2.2 mV (n = 9) and was blocked (P < 0.01) by bath perfusion with gadolinium (Gd(3+), 100 muM, n = 8), suggesting that ANG II activates membrane channels that are nonselectively permeable to cations. These findings indicate that ANG II excites PVN neurons that innervate the ipsilateral RVLM by a mechanism that depends on activation of AT1 receptors and gating of one or more classes of ion channels that result in a mixed cation current.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679885PMC
http://dx.doi.org/10.1152/jn.01055.2003DOI Listing

Publication Analysis

Top Keywords

neurons innervate
12
ang
12
pvn neurons
12
+/-
9
paraventricular nucleus
8
neurons
8
innervate rostral
8
rostral ventrolateral
8
ventrolateral medulla
8
ipsilateral rvlm
8

Similar Publications

The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P.

View Article and Find Full Text PDF

Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).

Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.

View Article and Find Full Text PDF

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

[Effect of somatic afferent nerve-visceral nerve circuit in the regulation of the gastrointestinal function with acupuncture and moxibustion].

Zhongguo Zhen Jiu

January 2025

Institute of Acupuncture and Moxibustion, Shandong University of TCM, Jinan 250355, China; Institute of Systematic Chinese Medicine, Shandong University of TCM, Jinan 250355, China.

The distribution of the common acupoints of acupuncture-moxibustion for gastrointestinal diseases conforms to the rule of the segmental homology of somatic afferent nerve-visceral nerve circuit at the spinal cord level. Acupuncture-moxibustion regulates the gastrointestinal function through the nerve-endocrine-immune system, and especially depending on the integrity of the structure and function of nervous system. The somatic afferent nerve-visceral nerve circuit plays an important role in the process of acupuncture and moxibustion for regulating the gastrointestinal function.

View Article and Find Full Text PDF

Introduction: This study explored the effects of prenatal exposure to fumonisins B (FB) on bone innervation in newborn Wistar rats.

Material And Methods: Pregnant dams (n = 6 per group) were assigned to either the control or one of two FB-exposed groups (60 mg or 90 mg/kg body weight) from the 7 day of gestation until parturition. On the day of parturition, one male pup from each litter (n = 6 per group) was randomly selected and euthanised, and their femurs were dissected for analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!