The Rho-GTPase Cdc42 is important for the establishment and maintenance of epithelial polarity. Signaling from Cdc42 is propagated via its effector molecules that specifically bind to Cdc42 in the GTP-bound form. The cell-cell contact regulator and actin-binding protein IQGAP1 is described as effector of Cdc42 and Rac. Unexpectedly, we show in this study that IQGAP1 bound also directly nucleotide-depleted Cdc42 (Cdc42-ND). This interaction was enhanced in the presence of phosphatase inhibitors and in epithelial cells without cell-cell contacts. Tandem mass spectrometry analysis and immunoprecipitation experiments revealed that IQGAP1 was Ser1443-phosphorylated in vivo, potentially by protein kinase Cepsilon and upon loss of cell-cell contacts. In addition, we identified two independent domains of the IQGAP1 C terminus that bound exclusively Cdc42-ND. These domains interacted with each other, favoring the binding to Cdc42-GTP. Moreover, phosphorylation on Ser1443 strongly inhibited this intramolecular interaction. Thus, we unraveled a molecular mechanism that reveals a novel type of Rho-GTPase regulator. We propose that, depending on its phosphorylation state, IQGAP1 might serve as an effector or sequester nucleotide-free Cdc42 to prevent signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M408113200DOI Listing

Publication Analysis

Top Keywords

type rho-gtpase
8
rho-gtpase regulator
8
cell-cell contacts
8
cdc42
7
iqgap1
5
phosphorylation iqgap1
4
iqgap1 modulates
4
modulates binding
4
binding cdc42
4
cdc42 revealing
4

Similar Publications

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear.

View Article and Find Full Text PDF

Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans.

Glia

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.

Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!