On-column derivatization-capillary electrochromatography with o-phthalaldehyde/alkylthiol for assay of biogenic amines.

J Chromatogr A

Laboratory of Food Science, Department of Home Economics, Aichi-Gakusen University, 28 Kamikawanari, Hegoshi-Cho, Okazaki City 444-8520, Japan.

Published: July 2004

The elution behaviors of the biogenic amines, histamine (HA) and its metabolite methyl histamine (MHA), were evaluated by means of on-column derivatization (OCD)-capillary electrochromatography (CEC) which employed a monolithic octadecylsilica (ODS) capillary column (20 cm of effective length x 50 microm of inner diameter). Five kinds of alkylthiols, e.g., 2- hydroxyethylthiol (or 2-mercaptoethanol (2-ME)), ethanethiol (ET), 1-propanethiol (1-PT), 2-methyl-1-propanethiol (2-MPT) and 1-butanethiol (1-BT) were separately presented at 5 mM each in the OCD-CEC separation run buffer consisting of 60% acetonitrile in 5 mM o-phthalaldehyde (OPA)-10 mM borate buffer (pH 10). When 2-ME was present in the run buffer solution, both derivatives corresponding to HA and MHA migrated separately, but closely together through the capillary column. Replacement of 2-ME with 1-BT in the run buffer solution caused a delay in their elution profiles on the electrochromatogram and the separation between those two peaks became remarkably improved. The elution times of HA and MHA followed the increase in alkyl chain length or hydrophobicity of thiol, 1-BT > 2-MPT > 1-PT > ET > 2-ME. Performance of on-line preconcentrations of HA and MHA was also evaluated by varying the electrokinetic injection voltage from 1 kV to 8 kV. The peak area counts corresponding to HA recorded about 50 times higher when 2 kV was applied for 240 s to a 0.1 mM HA solution than when 8 kV was applied for 5 s. This method was next applied to a sample of human urine spiked with HA and MHA at levels of 0.1 microM each. Although HA and MHA peaks were not identifiable among the peaks corresponding to the materials in the urine matrix when OPA/2-ME was employed in a run buffer for the OCD-CEC, the separation and identification of their peaks became possible by replacing 2-ME with 1-BT in the run buffer solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2004.04.053DOI Listing

Publication Analysis

Top Keywords

buffer solution
12
biogenic amines
8
mha evaluated
8
capillary column
8
ocd-cec separation
8
2-me 1-bt
8
1-bt buffer
8
mha
6
buffer
6
2-me
5

Similar Publications

Synthesis and Evaluation of Cytotoxic Activity of RuCp(II) Complexes Bearing (Iso)nicotinic Acid Based Ligands.

Pharmaceuticals (Basel)

January 2025

Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Background/objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments.

Methods: Building on the auspicious results obtained for [Ru(η-CH)(PPh)(bipy)][CFSO] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

The importance of fluorine and aluminum in all aspects of daily life has led to an enormous increase in human exposure to these elements in their various forms. It is therefore important to understand the routes of exposure and to investigate and understand the potential toxicity. Of particular concern are aluminum-fluoride complexes (AlF), which are able to mimic the natural isostructural phosphate group and influence the activity of numerous essential phosphoryl transferases.

View Article and Find Full Text PDF

This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.

View Article and Find Full Text PDF

Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!