Hypothesis: Balance anomalies are often associated with abnormalities of the vestibular part of the inner ear. We studied a newly generated mouse mutant with balance defects and asked whether its behavioral anomalies were associated with inner ear defects. Furthermore, we asked whether the mutation responsible for the defects was located in the same region of mouse chromosome 4 as several other mouse mutations that we have previously described.
Background: Phenotypic and genotypic analysis of mouse mutants with hearing or balance problems has helped greatly with the identification of the genes involved in deafness and has contributed to the understanding of mechanisms of normal hearing and balance. This article describes a new mouse mutant, flouncer, that shows a balance defect. The flouncer mutation shows semidominant inheritance, and was generated by mutagenesis using N- ethyl-N- nitrosourea.
Methods: Hearing was assessed by the Preyer reflex (ear-flick) test. Behavioral tests including open field and swimming tests were performed. The morphology of the middle and inner ears was investigated by microdissection, clearing using glycerol, paint-filling of the labyrinth, and scanning electron microscopy.
Results: Flouncer mutants showed vestibular dysfunction but do respond to sounds. Phenotypically, mutants had various degrees of truncation of the lateral semicircular canals, small or obliterated round window of the cochlea, and mild morphologic anomalies of the stapes. Flouncer mutants showed circling behavior and hyperactivity. Linkage mapping using a backcross has indicated that the mutation lies in proximal chromosome 4 proximal to D4Mit171.
Conclusion: The lateral semicircular canal has been described to be the most commonly affected part of the inner ear in humans, and flouncer provides a mouse model for genetic and developmental analysis of such defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00129492-200409000-00010 | DOI Listing |
Otol Neurotol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland.
Objective: We aimed to investigate the effect of adding "rapid decelerations" and "vibrations" during a SemontPLUS maneuver on the dynamics of the inner ear and the success rate of canalolithiasis repositioning.
Methods: We used a previously described upscaled (5×) in vitro model of the posterior semicircular canal of the inner ear to analyze the trajectory of a single and clumped surrogate otolith particle (metallic sphere) during a SemontPLUS maneuver (-60 degrees below earth horizontal) on a repositioning chair (TRV). We compared the angular displacement of these particles with and without the application of "vibrations" or "rapid decelerations" using TRV.
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
The effects of particulate matter (PMs) from different cities on the nervous system remain unclear. In this study, aqueous solutions of 0.45 μm membrane-filtered PM from 31 major Chinese cities were intravenously administered to rats.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL.
Treacher Collins syndrome (TCS) is an uncommon congenital disorder predominantly involving craniofacial, orbital, and otological structures. The various ear malformations seen in 9 patients with TCS are described. TCS predominantly affects the external and middle ear structures, with inner ear structures being relatively spared, not unexpected given the dual embryological origin of the human ear.
View Article and Find Full Text PDFHear Res
January 2025
CHU Lille, Department of Otology and Neurotology, F-59000 Lille, France; Univ. Lille, France; Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
Objective: The aim of this study is to detail and evaluate the surgical procedure for perilymph sampling from the cochlear apex in the Mongolian gerbil.
Design: Perilymph sampling from the cochlear apex was performed one to three time in 12 male gerbils aged 8 to 12 months via the submandibular route. 11 of them were previously implanted with intracochlear implants loaded with dexamethasone and placed in the scala tympani, the 12th was used to collect control samples.
J Acoust Soc Am
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!