In rats submitted to a C-fiber reflex response paradigm, intravenous (i.v.) administration of 2.5, 5 and 10 mg/kg of the synthetic polyamine N,N'-bis-(3-aminopropyl) cyclohexane-1,4-diamine (DCD) dose-dependently reduced both the integrated C reflex responses and wind-up activity. Inhibitory effects of the polyamine on spinal cord nociceptive transmission are likely to be consequence of blockade by extracellular DCD of NMDA receptor channels localized in dorsal horn neurons, although modulatory actions at supraspinal level and at other ion channels could also be possible.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.07.036DOI Listing

Publication Analysis

Top Keywords

synthetic polyamine
8
polyamine nn'-bis-3-aminopropyl
8
nn'-bis-3-aminopropyl cyclohexane-14-diamine
8
cyclohexane-14-diamine dcd
8
spinal cord
8
cord nociceptive
8
nociceptive transmission
8
dcd rat
4
rat spinal
4
transmission rats
4

Similar Publications

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

Synthesis and in vitro leishmanicidal activity of novel N-arylspermidine derivatives.

Bioorg Chem

December 2024

Universidad de Buenos Aires, CONICET, Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina. Electronic address:

This work describes the synthesis and biological evaluation of hitherto unknown N-arylspermidine derivatives 3. Compounds 3 were efficiently prepared from cyclic amidines through a novel synthetic approach comprising alkylation with ω-halonitriles followed by reduction. The cyclic N-arylamidine directs the alkylation to the unsubstituted nitrogen and also provides the N-benzyl group present in the triamine after simultaneous reduction of the resulting quaternary salt 2 and the cyano group.

View Article and Find Full Text PDF

Deciphering the Interplay Between G-Quadruplexes and Natural/Synthetic Polyamines.

Chembiochem

December 2024

Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.

The interplay between polyamines and G-quadruplexes has been largely overlooked in the literature, even though polyamines are ubiquitous metabolites in living cells and G-quadruplexes are transient regulatory elements, being both of them key regulators of biological processes. Herein, we compile the investigations connecting G-quadruplexes and biogenic polyamines to understand the biological interplay between them. Moreover, we overview the main works focused on synthetic ligands containing polyamines designed to target G-quadruplexes, aiming to unravel the structural motifs for designing potent and selective G4 ligands.

View Article and Find Full Text PDF

Background: This in vitro study aimed to evaluate the effect of sodium hypochlorite (NaOCl) and ethylene diamine tetraacetic acid (EDTA) as pretreatments on the resin infiltration efficacy and acid resistance of enamel white spot lesions (WSLs).

Methods: Enamel blocks prepared from the buccal surfaces of sound human premolars were placed in a demineralisation solution for 3 days to establish artificial enamel WSLs. All the blocks with WSLs were randomly divided into four groups (n = 40 per group): RI (Control): resin infiltration only.

View Article and Find Full Text PDF

Molecularly Imprinted Polymers (MIPs) are synthetic materials designed to selectively recognize and bind to specific target molecules. The process of determining Bupropion (BUP) using MIPs involves preparing the MIP, extracting the target molecule, and conducting subsequent analysis. A bio-inspired MIP-based electrochemical sensor was developed to detect BUP, utilizing the specific binding of MIPs to Bupropion molecules, enabling precise and sensitive detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!