Peroxisomes are ubiquitous subcellular organelles and abnormality in their biogenesis and specific gene defects leads to fatal demyelinating disorders. We report that neuroinflammatory disease in brain of experimental autoimmune encephalomyelitis (EAE) rats decreased the peroxisomal functions. Degradation of very long chain fatty acids decreased by 47% and resulted in its accumulation (C26:0, 40%). Decreased activity (66% of control) of dihydroxyacetonephosphate acyltransferase (DHAP-AT), first enzyme in plasmalogens biosynthesis, resulted in decreased levels of plasmalogens (16-30%). Catalase activity, a peroxisomal enzyme, was also reduced (37%). Gene microarray analysis of EAE spinal cord showed significant decrease in transcripts encoding peroxisomal proteins including catalase (folds 3.2; p<0.001) and DHAP-AT (folds 2.6; p<0.001). These changes were confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis, suggesting that decrease of peroxisomal functions in the central nervous system will have negative consequences for myelin integrity and repair because these lipids are major constituents of myelin. However, lovastatin (a cholesterol lowering and anti-inflammatory drug) administered during EAE induction provided protection against loss/down-regulation of peroxisomal functions. Attenuation of induction of neuroinflammatory mediators by statins in cultured brain cells [J. Clin. Invest. 100 (1997) 2671-2679], and in central nervous system of EAE animals and thus the EAE disease [J. Neurosci. Res. 66 (2001) 155-162] and the studies described here indicate that inflammatory mediators have a marked negative effect on peroxisomal functions and thus on myelin assembly and that these effects can be prevented by treatment with statins. These observations are of importance because statins are presently being tested as therapeutic agents against a number of neuroinflammatory demyelinating diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.06.059DOI Listing

Publication Analysis

Top Keywords

experimental autoimmune
8
autoimmune encephalomyelitis
8
impaired peroxisomal
4
peroxisomal function
4
function central
4
central nervous
4
nervous system
4
system inflammatory
4
inflammatory disease
4
disease experimental
4

Similar Publications

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease. Many studies have shown that microorganisms may be an important pathological factor leading to the onset of RA. Some infectious or non-infectious pathogenic microorganisms and their metabolites may be the initiating factors of the early onset of RA.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease which afflicts about nearly 1% of global population. RA results in synovitis and cartilage/bone damage, even disability which aggravates the health burden. Many drugs are used to relieve RA, such as glucocorticoids (GCs), non-steroidal anti-inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic drugs (DMARDs) in the clinical treatment.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Prophylactic administration of PEPITEM in experimental autoimmune encephalomyelitis delays disease onset, inhibits leukocyte infiltration, and alleviates severity.

Int J Clin Exp Pathol

December 2024

Department of Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA) Riyadh 11481, Saudi Arabia.

Background: Multiple sclerosis (MS) is a chronic, immune-mediated neurological disorder in which the immune system mistakenly attacks the myelin sheath, affecting the communication between the brain and the rest of the body.

Objective: This study investigated the prophylactic use of peptide inhibitor of trans-endothelial migration (PEPITEM), a novel peptide, in alleviating experimental autoimmune encephalomyelitis (EAE), a mouse model for Multiple Sclerosis (MS).

Methods: Female C57BL/6 female mice were assigned to the control, untreated EAE, or PEPITEM group.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is an autoimmune and chronic disease in the brain and spinal cord. MS has inflammatory progression characterized by its hallmark inflammatory plaques. The histological and clinical characteristics of MS are shared by Experimental Autoimmune Encephalomyelitis (EAE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!