Surface characteristics of holmium-loaded poly(L-lactic acid) microspheres.

Biomaterials

Department of Nuclear Medicine, University Medical Centre, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.

Published: March 2005

Radioactive holmium-166-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) are promising systems for the treatment of liver malignancies. The surface characteristics of Ho-PLLA-MS before and after both neutron and gamma irradiation were investigated in order to get insight into their suspending behaviour and to identify suitable surfactants for clinical application of these systems. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used for surface characterization. The residual amounts of poly(vinyl alcohol) (PVA) of the microspheres, which was used as an emulsifier during the solvent evaporation process, were determined using a colorimetric iodine-borate method and the wettability of microspheres and PLLA films with and without holmium (Ho) loading was tested using suspending experiments and contact angle measurements. XPS showed that the surface of Ho-PLLA-MS mainly consisted of PLLA, less than 10% of the surface was covered with PVA after several washing and sieving steps. A colorimetric assay showed that the microspheres contained 0.2-0.3% (w/w) PVA. Combined with XPS data, this assay demonstrates that the PVA is likely dissolved in the core of the microspheres. XPS analysis also showed that after neutron irradiation, some holmium appeared on the surface. Moreover, Ho-loaded PLLA films had a much higher contact angle (85 degrees) than non-loaded films (70 degrees). Therefore, the Ho on the surface of neutron-irradiated Ho-PLLA-MS is probably the reason for their poor suspending behaviour in saline. No surface changes were seen with XPS after gamma irradiation. Based on their surface characteristics, a pharmaceutically acceptable solvent (1% Pluronic F68 or F127 in 10% ethanol) was formulated with which a homogeneous suspension of radioactive Ho-PLLA-MS could be easily obtained, making these systems feasible for further clinical evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2004.03.028DOI Listing

Publication Analysis

Top Keywords

surface characteristics
12
surface
9
polyl-lactic acid
8
acid microspheres
8
gamma irradiation
8
suspending behaviour
8
plla films
8
contact angle
8
microspheres
6
ho-plla-ms
5

Similar Publications

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Identifying and understanding the nonlinear behavior of memristive devices.

Sci Rep

December 2024

Chair of Applied Electrodynamics and Plasma Technology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

Nonlinearity is a crucial characteristic for implementing hardware security primitives or neuromorphic computing systems. The main feature of all memristive devices is this nonlinear behavior observed in their current-voltage characteristics. To comprehend the nonlinear behavior, we have to understand the coexistence of resistive, capacitive, and inertia (virtual inductive) effects in these devices.

View Article and Find Full Text PDF

The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!