Molecular phylogeny of phyllopharyngean ciliates and their group I introns.

J Eukaryot Microbiol

Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA.

Published: September 2004

We analyzed small subunit ribosomal DNA (ssu-rDNA) sequences to evaluate both the monophyly of the ciliate class Phyllopharyngea de Puytorac et al. (1974), and relationships among subclasses. Classifications based on morphology and ultrastructure divide the Phyllopharyngea into four subclasses, the Phyllopharyngia, Chonotrichia, Rhynchodia, and Suctoria. Our analyses of ssu-rDNA genealogies derived from sequence data collected from diverse members representing three of the four subclasses of Phyllopharyngea (Suctoria: Ephelota spp., Prodiscophyra collini, Acineta sp.; Phyllopharyngia: Chlamydodon exocellatus, Chlamydodon triquetrus, Dysteria sp.; and Chonotrichia: Isochona sp.) provide strong support for the monophyly of the Phyllopharyngea, and show that the Chonotrichia emerge from within the Phyllopharyngia. Based on this initial sampling, suctorian budding types are monophyletic, and exogenous budding appears to be basal to evaginative and endogenous budding. Further, we report the discovery of a group I intron at position 891 in the Suctoria Acineta sp. and Tokophrya lemnarum, and a second group I intron at position 1506 in T. lemnarum. These introns represent only the second examples of group I introns in a ciliate ribosomal gene, since the discovery of ribozymes in the LSU rRNA gene of Tetrahymena thermophila. Phylogenetic analyses of Group I introns suggest a complex evolutionary history involving either multiple loses or gains of introns within endogenously budding Suctoria.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1550-7408.2004.tb00392.xDOI Listing

Publication Analysis

Top Keywords

group introns
12
group intron
8
intron position
8
group
5
introns
5
molecular phylogeny
4
phylogeny phyllopharyngean
4
phyllopharyngean ciliates
4
ciliates group
4
introns analyzed
4

Similar Publications

A previous study found that a domesticated bacterial group II intron-like reverse transcriptase (G2L4 RT) functions in double-strand break repair (DSBR) via microhomology-mediated end joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-LTR-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing novel structural adaptations that optimized its cellular function in DSBR. These included a unique RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering an appropriate substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ.

View Article and Find Full Text PDF

Plant phylogenetics has been revolutionised in the genomic era, with target capture acting as the primary workhorse of most recent research in the new field of phylogenomics. Target capture (aka Hyb-Seq) allows researchers to sequence hundreds of genomic regions (loci) of their choosing, at relatively low cost per sample, from which to derive phylogenetically informative data. Although this highly flexible and widely applicable method has rightly earned its place as the field's standard, it does not come without its challenges.

View Article and Find Full Text PDF

While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.

View Article and Find Full Text PDF

Urinary schistosomiasis is caused by the blood fluke , which is predominantly found in Africa. The freshwater snail is its main intermediate host. The species that make up the group are genetically complex, and their taxonomic status remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!