A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of methanol on the enantioresolution of antihistamines with carboxymethyl-beta-cyclodextrin in capillary electrophoresis. | LitMetric

Influence of methanol on the enantioresolution of antihistamines with carboxymethyl-beta-cyclodextrin in capillary electrophoresis.

Electrophoresis

Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Pharmaceutical Institute, Vrije Universiteit Brussel, Brussels, Belgium.

Published: August 2004

According to the model of Wren and Rowe, the separation between two enantiomers in capillary electrophoresis (CE) decreases if an organic modifier is added to the run buffer containing a neutral cyclodextrin (CD) in a concentration below its optimal value in a solvent-free system. In previous work, however, it was observed that the addition of methanol to the background electrolyte (BGE) containing not charged carboxymethyl-beta-CD in a concentration below its optimal value, increased the enantioresolution of dimetindene maleate. The enantioresolution decreased when other organic modifiers (ethanol, isopropanol or acetonitrile) were added and/or when other neutral (beta-CD, hydroxypropyl-beta-CD) or chargeable (carboxyethyl-beta- and succinyl-beta-CD) CDs were used. In this CE study further attempts are made to elucidate the observed phenomena through investigating other basic drugs. The effect of organic modifier and CD concentration on the enantioseparation was studied by means of central composite designs. It is shown that obtaining this increase in enantioresolution depends upon the type of CD, the type of organic modifier, and the structure of the analytes. It was also observed that small differences in the structure of the analytes or the CD could have an influence on the enantioresolution. The addition of methanol also resulted in different effects on the resolution of closely related analytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200406021DOI Listing

Publication Analysis

Top Keywords

organic modifier
12
capillary electrophoresis
8
concentration optimal
8
addition methanol
8
structure analytes
8
enantioresolution
5
influence methanol
4
methanol enantioresolution
4
enantioresolution antihistamines
4
antihistamines carboxymethyl-beta-cyclodextrin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!