The function of cellular prion protein (PrPC), which is a copper binding protein, remains unclear. To elucidate the mechanisms in which PrPC is involved in neuroprotection, we compared death signals in prion protein gene-deficient (Prnp-/-) primary cerebellar granular neurons (CGNs) to those with wild-type (WT) CGNs. When copper was exposed to these CGNs, ZrchI, and Rikn Prnp-/- CGNs were more sensitized and underwent apoptotic cell death more readily than WT CGNs. Furthermore, the level of intracellular hydrogen peroxide (H2O2) in WT CGNs increased by copper toxicity, whereas those in ZrchI and Rikn Prnp-/- CGNs did not. These results suggest that PrPC modulates the intracellular H2O2 level as a copper-binding protein to protect CGNs from apoptotic cell death possibly due to inhibiting a Fenton reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.08.087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!