Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells.

Biochem Biophys Res Commun

Fujisaki Cell Center, Hayashibara Biochemical Laboratories, Inc., 675-1, Fujisaki, Okayama 702-8006, Japan.

Published: October 2004

The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.08.052DOI Listing

Publication Analysis

Top Keywords

demethylating agent
8
agent 5-azacytidine
8
reverses differentiation
8
embryonic stem
8
differentiation
7
cells
6
5-azac
5
5-azacytidine reverses
4
embryonic
4
differentiation embryonic
4

Similar Publications

Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.

View Article and Find Full Text PDF

Homeobox A5 () has been identified as a tumor suppressor gene in breast cancers, but its role in oral squamous cell carcinoma (OSCC) has not been confirmed. The Illumina GoldenGate Assay for methylation identified that DNA methylation patterns differ between tumorous and normal tissues in the oral cavity and that is one of the genes that are hypermethylated in oral tumor tissues. The present study obtained more‑complete information on the methylation status of by using the Illumina Infinium MethylationEPIC BeadChip and bisulfite sequencing assays.

View Article and Find Full Text PDF

Development and Validation of a Sensitive LC-MS/MS Method for Determination of Lenvatinib and Its Major Metabolites in Human Plasma and Its Application in Hepatocellular Carcinoma Patients.

J Sep Sci

December 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.

Lenvatinib has been demonstrated effective in advanced hepatocellular carcinoma (HCC), but the pharmacokinetic-pharmacodynamics behavior of lenvatinib and its metabolites remains unclear. To investigate the pharmacokinetic-pharmacodynamics behavior of lenvatinib and its active metabolites in advanced HCC patients, it is important to develop a simple and rapid method to analyze the exposures of lenvatinib and its metabolites in human samples. Here, we established and validated a simple and rapid method for determining lenvatinib and its three major metabolites, descyclopropyl lenvatinib (M1), O-demethyl lenvatinib hydrochloride (M2), and lenvatinib N-Oxide (M3) by liquid chromatography-tandem mass spectrometry method.

View Article and Find Full Text PDF

A new functional group transformation allowing the synthesis of methyl-dithioesters from readily available trifluoromethyl arenes defluorinative functionalization has been developed. This microwave-assisted method is operationally simple, rapid, and eliminates the need for pre-functionalization while accommodating a broad range of functional groups. In addition, it does not rely on highly odorous thiol sources, and utilizes the commercially available reagent BFSMe complex as a multifunctional Lewis acid/sulfur source/defluorination and demethylation agent.

View Article and Find Full Text PDF

Ovarian cancer is one of the most common gynecologic cancers. In the quest for effective anti-cancer agents, this study explores the effects of wogonin, a naturally occurring flavonoid, on the viability and migration of A2780 and Kuramochi ovarian cancer cells. A2780 and Kuramochi human ovarian cancer cell lines were utilized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!