During excitotoxic brain damage, injured neurons accumulate an anomalous, pathological burden of weakly bound, rapidly exchangeable Zn(2+) that diffusely fills the soma, nucleus and proximal dendrites. Mounting evidence indicates that this Zn(2+) is a major contributing factor in the subsequent demise of the damaged neurons. Thus, identifying, imaging, and characterizing zinc-filled cells have become essential steps in understanding excitotoxicity. Here we demonstrate that a new fluorescent stain for zinc can rather selectively and quite vividly label zinc-filled neurons in frozen histologic sections. The method is more sensitive and selective than the existing stain TSQ, and simpler than the Timm-Danscher silver staining techniques. A previously unobserved population of apparently injured cells in the dentate gyrus has been discovered with the new reagent. Whereas cells viewed in situ in normal, healthy tissue virtually never display any perikaryal staining by histochemical methods for zinc, injured cells stain intensely for zinc in culture, acute slice preparations and in tissue harvested in vivo. Thus, the presence of rapidly-exchangeable, "stainable" perikaryal zinc may be taken as an indicator of cell injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2004.04.033DOI Listing

Publication Analysis

Top Keywords

injured cells
8
cells
5
zinc
5
method identifying
4
identifying neuronal
4
neuronal cells
4
cells suffering
4
suffering zinc
4
zinc toxicity
4
toxicity novel
4

Similar Publications

Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs.

View Article and Find Full Text PDF

Ghrelin reduced the profibrotic effect of IHC-Exo in liver fibrosis by regulating lncMALAT1/GPX4 pathway mediated HSCs ferroptosis. Triggering HSCs ferroptosis via GHR-IHC-Exo may become a novel strategy to alleviate the progression of liver fibrosis. Liver fibrosis is the end stage of the continuous progression of a variety of chronic liver diseases.

View Article and Find Full Text PDF

Invasive lung myofibroblasts are the main cause of tissue remodeling in idiopathic pulmonary fibrosis (IPF). A key mechanism contributing to this important feature is aberrant crosstalk between the abnormal/injured lung epithelium and pulmonary fibroblasts. Here, we demonstrate that lungs from patients with IPF and from mice with bleomycin (BLM)-induced pulmonary fibrosis (PF) are characterized by the induction of human epididymis protein 4 (HE4) overexpression in epithelial cells.

View Article and Find Full Text PDF

A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair.

View Article and Find Full Text PDF

Extracellular vesicle-mediated VEGF-A mRNA delivery rescues ischaemic injury with low immunogenicity.

Eur Heart J

January 2025

School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 2199 Lishui Rd, Nanshan, Shenzhen, Guangdong Province 518055, China.

Background And Aims: Lackluster results from recently completed gene therapy clinical trials of VEGF-A delivered by viral vectors have heightened the need to develop alternative delivery strategies. This study aims to demonstrate the pre-clinical efficacy and safety of extracellular vesicles (EVs) loaded with VEGF-A mRNA for the treatment of ischaemic vascular disease.

Methods: After encapsulation of full-length VEGF-A mRNA into fibroblast-derived EVs via cellular nanoporation (CNP), collected VEGF-A EVs were delivered into mouse models of ischaemic injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!