A network of neurons in the rostral dorsal lateral pons and pons/mescencephalic junction constitute the pontine respiratory group (PRG) and is essential for reflex cough. As a next step in understanding the role of the PRG in the expression of the cough reflex, we examined neuron firing rates during fictive cough in cats. Decerebrated, thoracotomized, paralyzed, cycle-triggered ventilated adult cats were used. Extracellular activity of many single neurons and phrenic and lumbar neurograms were monitored during fictive cough produced by mechanical stimulation of the intrathoracic trachea. Neurons were tested during control periods for respiratory modulation of firing rate by cycle-triggered histograms and statistical tests. Most respiratory modulated cells were continuously active with various superimposed respiratory patterns; major categories included inspiratory decrementing (I-Dec), expiratory decrementing (E-Dec) and expiratory augmenting (E-Aug). There were alterations in the discharge patterns of respiratory, as well as, non-respiratory modulated neurons during cough. The results suggest an involvement of the PRG in the configuration of the cough motor pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2004.05.002DOI Listing

Publication Analysis

Top Keywords

fictive cough
12
pontine respiratory
8
respiratory group
8
cough
7
respiratory
5
group neuron
4
neuron discharge
4
discharge altered
4
altered fictive
4
cough decerebrate
4

Similar Publications

The perfused working heart brainstem preparation of rodents has become a widely used tool to study brainstem function. Here, we adapt this experimental technique for newborn guinea pigs (postnatal day 7-14) to develop a tool that enables investigation of airway defense mechanisms not observed in other rodents. The perfused guinea pig brainstem preparation generates a stable eupnea-like motor pattern recorded from the phrenic, recurrent laryngeal and intercostal nerves and basic cardio-respiratory reflexes, including the arterial chemoreceptor, the baroreceptor reflex.

View Article and Find Full Text PDF

The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing.

View Article and Find Full Text PDF

To examine the relationship between the neuronal networks underlying respiration and non-respiratory behaviors such as vocalization and airway defensive reflexes, we compared the activity of respiratory neurons in the ventrolateral medulla during breathing with that during non-respiratory behaviors including vocalization, swallowing, and coughing in guinea pigs. During fictive vocalization the activity of augmenting expiratory neurons ceased, whereas the other types of expiratory neurons did not show a consistent tendency of increasing or decreasing activity. All inspiratory neurons discharged in synchrony with the phrenic nerve activity.

View Article and Find Full Text PDF

Discharge Identity of Medullary Inspiratory Neurons is Altered during Repetitive Fictive Cough.

Front Physiol

October 2012

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida Tampa, FL, USA.

This study investigated the stability of the discharge identity of inspiratory decrementing (I-Dec) and augmenting (I-Aug) neurons in the caudal (cVRC) and rostral (rVRC) ventral respiratory column during repetitive fictive cough in the cat. Inspiratory neurons in the cVRC (n = 23) and rVRC (n = 17) were recorded with microelectrodes. Fictive cough was elicited by mechanical stimulation of the intrathoracic trachea.

View Article and Find Full Text PDF

Cough-related neurons in the nucleus tractus solitarius of decerebrate cats.

Neuroscience

August 2012

Laboratory of Neuropharmacology, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan.

This study was carried out on decerebrate, paralyzed and artificially ventilated cats to investigate the central regulatory mechanism for cough reflex. Fictive cough was induced by repetitive stimulation of the superior laryngeal nerve (SLN) or the nucleus tractus solitarius (NTS), and characterized by an increased inspiratory discharge in the phrenic nerve (stage 1 of cough; S1C) and large burst discharge in the iliohypogastric nerve (stage 2 of cough; S2C). Membrane potential was recorded from the neurons located in the cough-inducible sites of the NTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!