Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3108
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3108
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present studies demonstrate that infusion of a type B specific lectin derived from the mushroom Marasmius oreades (MOA) into mice binds selectively to the glomerular endothelial cells via surface carbohydrate moieties resulting in cell injury and death associated with platelet-fibrin thrombi. This selective MOA binding to the endothelial cells can be abrogated by a sugar specific for the carbohydrate sequence. Hemolytic-Uremic Syndrome (HUS) and the closely associated Thrombotic Thrombocytopenic Purpura (TTP) are diseases associated with widespread microvascular injury in various organs. Clinically, these diseases are associated with microangiopathic hemolytic anemia and thrombocytopenia. The kidney glomerulus is a primary target of this microvascular injury. There are many underlying etiologies including bacterial toxins. Experimentally, such toxins injure endothelial cells in vitro but in vivo studies have failed to reproduce the characteristic renal pathology. We suggest that MOA-induced glomerular microangiopathic injury could be used to study the pathophysiology of endothelial cell injury as related to glomerular microangiopathic injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexmp.2004.04.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!