Morphological, biochemical and histochemical components of mitochondria-rich (MR) cells of skin epithelium of Xenopus laevis (Daudin) were investigated after acclimation in distilled water (DW) and mild solutions (50 mmol/l) of either NaCl or KCl for over 10 days. The animals readily acclimated to NaCl, but approximately 50% of the animals died in the KCl solution. Electrophysiological measurements confirmed the poor transport properties of skin in all conditions. Silver staining and exposure to methylene blue (MB) have shown that two types of MR cells can be distinguished, especially after KCl acclimation. Immunohistochemistry with the use of anti-band 3 polyclonal and anti H+-ATPase monoclonal antibodies demonstrated that band 3 and H+-ATPase enzymes were localized in MR cells in all conditions. H+-ATPase was greatly reduced during NaCl acclimation as verified with SDS gel electrophoresis. Intensity of the immunohistochemical staining differed between the various conditions of acclimation. Histochemical localization of carbonic anhydrase and alkaline phosphatase activities was more intense during NaCl acclimation. Morphological changes were also observed between the various acclimation conditions. The present findings substantiate the existence of at least two forms of MR cells in Xenopus skin epithelium but their functional significance remains to be established.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acthis.2004.02.006DOI Listing

Publication Analysis

Top Keywords

skin epithelium
12
mitochondria-rich cells
8
cells xenopus
8
xenopus laevis
8
acclimation morphological
8
nacl acclimation
8
acclimation
7
cells
5
enzymatic changes
4
changes mitochondria-rich
4

Similar Publications

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.

Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).

View Article and Find Full Text PDF

A calcifying epithelial odontogenic tumour (CEOT) is a rare benign odontogenic tumour of epithelial origin accounting for approximately 1% of all odontogenic tumours. The intraosseous form occurs more commonly in the posterior mandible whereas the extraosseous form is common in the anterior maxilla. CEOT is often asymptomatic and presents with a painless swelling of the mandible.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!