Ligand binding to ecdysone receptor (EcR) is an autonomous function of the ligand binding domain (LBD) and is not modified by other receptor domains or tags fused to the LBD. Association and dissociation velocity of hormone to EcR was studied in the absence and presence of its main dimerization partner Ultraspiracle (USP). Mutational analysis of the EcR(LBD) revealed that ligand entry and exit is affected differently by the same point mutation, indicating that different pathways are used for association and dissociation of the ligand. Heterodimerization with wild type USP(LBD) increases ligand association to EcR(LBD) about fivefold and reduces dissociation 18-fold. Opposite effects of the same mutation (N626K) on dissociation velocity of ligand in EcR and EcR/USP indicate that not only hormone binding itself, but also the kinetic behaviour of ligand binding is modified by the dimerization partner. A general effect of the point mutations on the 3D architecture seems unlikely due to the highly selective effects on the kinetics of hormone binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2004.06.007 | DOI Listing |
Diabetes
January 2025
Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
PPARγ is the pharmacological target of thiazolidinediones (TZDs), potent insulin sensitizers that prevent metabolic disease morbidity but are accompanied by side effects such as weight gain, in part due to non-physiological transcriptional agonism. Using high throughput genome engineering, we targeted nonsense mutations to every exon of PPARG, finding an ATG in Exon 2 (chr3:12381414, CCDS2609 c.A403) that functions as an alternative translational start site.
View Article and Find Full Text PDFJ Phycol
January 2025
School of Life Sciences, Central China Normal University, Wuhan, People's Republic of China.
Phytoplankton plays a crucial role in the fate of pollutants in aquatic ecosystems by biotransformation and bioaccumulation. Aniline was listed in priority pollutants due to its toxicity and widespread distribution in the aquatic environment. This study focused on investigating the capacity and mechanism of eukaryotic alga Chlamydomonas reinhardtii in transforming aniline.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur 303002, Rajasthan, India.
Background: Colorectal cancer (CRC) is a complex and increasingly prevalent malignancy with significant challenges in its treatment and prognosis. This study aims to explore the role of the SLC4A4 transporter as a biomarker in CRC progression and its potential as a therapeutic target, particularly in relation to tumor acidity and immune response.
Methods: The study utilized computational approaches, including receptor-based virtual screening and high-throughput docking, to identify potential SLC4A4 inhibitors.
Curr Issues Mol Biol
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China.
Olfactory receptors (ORs) are members of the transmembrane G protein-coupled receptor superfamily, playing a crucial role in odor recognition, which further mediates crucial biological processes in mammals. In sows, androstenone can trigger sexual behaviors through olfaction, but the underlying mechanism remains to be explored. To efficiently and accurately screen pig olfactory receptors responding to androstenone and the key structure determinant, we adapted the high-throughput RNA-seq strategy to screen the altered genes upon androstenone treatment in the olfactory epithelium of pigs, yielding 1397 downregulated genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!