Angiogenesis gene expression profiling in xenograft models to study cellular interactions.

Exp Cell Res

Angiogenesis Laboratory, Research Institute for Growth and Development (GROW), Departments of Internal Medicine and Pathology, University Maastricht and University Hospital Maastricht, 6202 AZ Maastricht, The Netherlands.

Published: October 2004

The present study describes a method to simultaneously obtain the angiogenic expression profile in tumor cells and vascular cells of a single tumor. Human- and mouse-specific primers were used for quantitative real-time RT-PCR to determine the expression of vascular endothelial growth factors A, B, C, and D, vascular endothelial growth factor receptors 1, 2, and 3, neuropilin 1 and 2, angiopoietin 1, 2, 3/4, tyrosine kinase receptors 1 and 2, basic fibroblast growth factor (bFGF) in xenograft tumors obtained by injection of human ovarian carcinoma cells in nude mice. In addition, the effect of treatment with anginex and taxol on the expression profile was analyzed. Most factors were expressed higher in vascular cells as compared to tumor cells. In response to treatment, tumor cells significantly upregulated bFGF expression and downregulated VEGF receptor expression. This was accompanied by downregulation of VEGF-B and -D, and upregulation of angiopoietin-3 as well as angiopoetin receptors in nontumor cells. In conclusion, real-time qRT-PCR combined with xenograft tumor models presents a sensitive method to monitor angiogenesis and to analyze interactions between tumor cells and nontumor cells in vivo. The approach can be applied to different research fields in which xenograft models are used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2004.06.014DOI Listing

Publication Analysis

Top Keywords

tumor cells
16
cells
9
xenograft models
8
expression profile
8
vascular cells
8
vascular endothelial
8
endothelial growth
8
growth factor
8
nontumor cells
8
expression
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!