Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment.

Water Res

Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.

Published: October 2004

The objective of this research was to examine the impact of a magnetic ion exchange resin (MIEX) on ozone demand and bromate formation in two different ozonated waters at bench scale. The first raw water had a high bromide ion concentration, a high ozone demand, and was highly colored. Based on experimental findings from the first water, the second water was selected as a model water in which more controlled experiments were performed. The waters were treated with the MIEX resin using jar test procedures to find the optimal MIEX dosage based upon the removal of ultraviolet (UV)-absorbing substances, dissolved organic carbon (DOC), and bromide. The optimal resin dosage was chosen for bulk MIEX treatment and subsequent ozonation in a semi-batch reactor. The ozone demand and formation of bromate were analyzed as a function of ozone dosage and dissolved ozone concentration for the MIEX pre-treated water, and compared to the results obtained by ozonating the water without MIEX pre-treatment. The results indicate that pre-treatment of the water with the MIEX resin significantly reduces total organic carbon, DOC, UV absorbance, color, and to some extent, bromide. MIEX pre-treatment of the water prior to ozonation substantially lowered the ozone demand and formation of bromate during subsequent ozonation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2004.06.021DOI Listing

Publication Analysis

Top Keywords

ozone demand
20
water
9
impact magnetic
8
magnetic ion
8
ion exchange
8
exchange resin
8
demand bromate
8
bromate formation
8
miex
8
miex resin
8

Similar Publications

Ozone/Thiosulfate-Assisted Leaching of Cu and Au from Old Flotation Tailings.

Molecules

December 2024

Department of Environment and Sustainable Development, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia.

The growing demand for metal production promotes the search for alternative sources and novel modalities in metallurgy. Flotation tailings are an important secondary mineral resource; however, they might pose a potential environmental threat due to containing toxic metals. Therefore, proper leaching reagent selection is required.

View Article and Find Full Text PDF

Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.

View Article and Find Full Text PDF

The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.

View Article and Find Full Text PDF

The present study aimed to establish the feasibility of the wastewater treatment process generated from an oleaginous fermentation plant. Treatment of spent fermentation broth (SFB) poses significant environmental challenges due to its high organic load, recalcitrant compounds, and potential toxicity. The synergistic effects of combining ozone-based advanced oxidation process (O-AOP) with biological treatment for the efficient degradation of pollutants in spent fermentation broth.

View Article and Find Full Text PDF

Toward synergetic reduction of pollutant and greenhouse gas emissions from vehicles: a catalysis perspective.

Chem Soc Rev

December 2024

Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!