A growing inefficacy of antimicrobial agents to treat infectious diseases has stimulated research on the development of antibiotic resistance in bacteria in the environment. Sustained exposure of soil microorganisms to tetracycline (TC) in flow-through columns (50mg/L influent) significantly decreased the effluent concentration of total heterotrophs and selected for TC-resistant (Tet(r)) soil bacteria. This suggests that TC released to the environment from animal farms may contribute to the development and amplification of TC resistance, with soil bacteria serving as reservoirs for antibiotic resistance continuance. Burkholderia cepacia, with genetic determinants for efflux pumps that facilitate TC excretion, was the only bacterium that grew on TC-amended R2A plates. Following 300 days of exposure, TC was removed from the influent to study the recovery pattern of the microbial community. The percentage of Tet(r) hererotrophs decreased from 25% to close to the control level of 1% within 1 month of discontinuing TC exposure. This was due both to a significant rebound in the total heterotrophic population and to a significant decrease in the concentration of Tet(r) bacteria. Thus, discontinuing TC exposure or curtailing its use should enhance natural attenuation mechanisms that mitigate the spread of resistance vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2004.06.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!