Activation of the insulin-like growth factor-1 (IGF)-1 receptor signaling pathways by IGF-1 and IGF-2 results in mitogenic and anabolic effects. The bioavailability of the IGFs is regulated by six soluble binding proteins, the insulin-like growth factor binding proteins (IGFBPs), which bind with approximately 0.1 nM affinity to the IGFs and often serve as endogenous antagonists of IGF action. To identify key domains of IGF-1 involved in the interaction with IGFBP-2 and IGFBP-3, we employed IGF-1 selectively biotinylated on residues Gly 1, Lys 27, Lys 65, and Lys 68. All monobiotinylated species of IGF-1 exhibited high affinity ( approximately 0.1-0.2 nM) for IGFBP-2 and IGFBP-3 in solid-phase-binding assays. However, different labeling intensities were observed in ligand blot analysis of IGFBP-2 and IGFBP-3. The N(epsilon)(Lys65/68)(biotin)-IGF-1 (N(epsilon)(Lys65/68b)-IGF-1) probe exhibited the highest signal intensity, while N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 demonstrated significantly lower signals. When taken together, these results suggest that, once bound to IGFBP-2 or IGFBP-3, the biotin moieties of N(alpha)(Gly1b)-IGF-1 and N(epsilon)(Lys27b)-IGF-1 are inaccessible to NeutrAvidin-peroxidase, the secondary binding component. Ligand blots using IGF-1 derivatized with a long chain form of the N-hydroxysuccinimide biotin (NHS-biotin) to yield N(alpha)(Gly1)(LC-biotin)-IGF-1 and N(epsilon)(Lys27)(LC-biotin)-IGF-1 demonstrated increased signal intensity compared with their NHS-biotin counterparts. In BIAcore analysis, IGFBP-2 and IGFBP-3 bound only to the N(epsilon)(Lys65/68b)-IGF-1-coated flowcell of a biosensor chip, confirming the inaccessibility of Gly 1 and Lys 27 when IGF-1 is bound to IGFBP-2 and IGFBP-3. These data confirm the involvement of the IGFBP-binding domain on IGF-1 in binding to IGFBP-2 and IGFBP-3 and support involvement of the IGF-1R-binding domain in IGFBP binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi049082k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!