Hepatocyte transplantation is restricted by the impaired ability of hepatocytes to engraft and survive in the damaged liver. Understanding the mechanisms that control this process will permit the development of strategies to improve engraftment. We studied changes in liver matrix during acute injury and delineated the mechanisms that perturb the successful adhesion and engraftment of hepatocytes. Collagen IV expression was increased in sinusoidal endothelium and portal tracts of fulminant hepatic failure explants, whereas there were minimal changes in the expression of fibronectin, tenascin, and laminin. Using an in vitro model of cellular adhesion, hepatocytes were cultured on collagen-coated plates and exposed to serum from patients with liver injury to ascertain their subsequent adhesion and survival. There was a rapid, temporally progressive decrease in the adhesive properties of hepatocytes exposed to such serum that occurred within 4 hours of exposure. Loss of activity of the beta1-integrin receptor, which controls adhesion to collagen, was seen to precede this loss of adhesive ability. Addition of the beta1-integrin activating antibody (TS2/16) to cells cultured with liver injury serum significantly increased their adhesion to collagen, and prevented significant apoptosis. In conclusion, we have identified an important mechanism that underpins the failure of infused hepatocytes to engraft and survive in liver injury. Pretreating cells with an activating antibody can improve their engraftment and survival, indicating that serum from patients with liver injury exerts a defined nontoxic biological effect. This finding has important implications in the future of cellular transplantation for liver and other organ diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.20359DOI Listing

Publication Analysis

Top Keywords

liver injury
16
serum patients
12
fulminant hepatic
8
hepatic failure
8
hepatocytes engraft
8
engraft survive
8
improve engraftment
8
exposed serum
8
patients liver
8
adhesion collagen
8

Similar Publications

Rationale: Liver fibrosis is a critical stage in the progression from liver injury to cirrhosis or tumor formation. Traditional Chinese medicine (TCM) has shown certain effectiveness in treating liver fibrosis. However, there is currently a lack of knowledge, attitude, and practice (KAP) studies regarding this topic.

View Article and Find Full Text PDF

Risk Prediction of Liver Injury in Pediatric Tuberculosis Treatment: Development of an Automated Machine Learning Model.

Drug Des Devel Ther

January 2025

Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, People's Republic of China.

Purpose: Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions related to first-line anti-tuberculosis drugs in pediatric tuberculosis patients. This study aims to develop an automatic machine learning (AutoML) model for predicting the risk of anti-tuberculosis drug-induced liver injury (ATB-DILI) in children.

Methods: A retrospective study was performed on the clinical data and therapeutic drug monitoring (TDM) results of children initially treated for tuberculosis at the affiliated Changsha Central Hospital of University of South China.

View Article and Find Full Text PDF

BuShao Tiaozhi Capsule (BSTZC), a novel drug in China, has been used to treat hyperlipidemia (HLP) in clinical practice for many years. Despite our previous studies suggesting that BSTZC can treat HLP, there is a lack of a rapid and systematic method to explore its active components. Therefore, in this study, we aimed to investigate the active components and mechanisms of BSTZC in treating HLP by integrating serum pharmacology, pharmacokinetics, network analysis, and experimental validation.

View Article and Find Full Text PDF

Aims: The number of orthotopic lung transplants (OLT) has skyrocketed since the 1960s, generating an ever-increasing cohort of post-OLT patients. Many challenges exist in the post-OLT timeframe, including donor graft dysfunction, infection, malignancy, and immunosuppression-related conditions. A rather elusive topic in the posttransplant setting remains the impact of the underlying disease process and donor lungs on other organ systems and the complications arising from the complex physiologic interactions.

View Article and Find Full Text PDF

Revolutionizing liver fibrosis research: the promise of 3D organoid models in understanding and treating chronic liver disease.

Expert Rev Gastroenterol Hepatol

January 2025

Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany.

Introduction: Liver fibrosis, marked by excessive extracellular matrix deposition, is a significant consequence of chronic liver injuries from various conditions. It can progress to end-stage liver disease, with liver transplantation often being the only treatment option. Recent advancements in 3D-organoid technology have transformed liver disease research by providing models that mimic the human liver's physiological environment, offering insights into mechanisms of fibrosis and potential therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!