Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition.

Intensive Care Med

Department of Pathophysiology, Hospital de Clínicas, School of Medicine, Universidad de la República , Avenida Italia s/n, Piso 15, CP 11600 Montevideo, Uruguay.

Published: December 2004

Objective: Decreased diaphragmatic contractility and organ failure observed during sepsis is mediated by an overproduction of nitric oxide ((.)NO)-derived species, mitochondria being a major target of oxidative and nitrative stress. We tested the potential protective effects of (a) a novel synthetic antioxidant, the manganese(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP(5+)) and (b) the inducible (.)NO synthase inhibitor aminoguanidine (AG) on a rat model of sepsis.

Setting: University research laboratories.

Subjects And Interventions: Sepsis was induced by cecal ligation and perforation in rats.

Measurements And Results: Systemic hemodynamics, pulmonary gas exchange, in vitro diaphragmatic function and mitochondrial respiration were evaluated. Moreover, plasma and mitochondrial oxidative and nitrative stress parameters were investigated. Sepsis determined diaphragmatic dysfunction and a significant decrease in mitochondrial coupling and respiration. Oxidative stress was evidenced by decreased plasma antioxidants and increased lipid oxidation. Tyrosine nitration was increased in the plasma and mitochondria of the septic animals. These alterations were ameliorated or prevented by either MnTE-2-PyP(5+) or AG.

Conclusions: Our results demonstrate that overproduction of (.)NO and (.)NO-derived reactive species play a critical role in mitochondrial impairment and diaphragmatic function during sepsis. More importantly, AG but mainly the novel metalloporphyrin MnTE-2-PyP(5+) were able to ameliorate diaphragmatic and mitochondrial dysfunction and could contribute to preventing organ failure during severe sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00134-004-2427-xDOI Listing

Publication Analysis

Top Keywords

diaphragmatic dysfunction
8
nitric oxide
8
organ failure
8
oxidative nitrative
8
nitrative stress
8
diaphragmatic function
8
diaphragmatic
5
sepsis
5
mitochondrial
5
septic diaphragmatic
4

Similar Publications

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Background: Urinary incontinence (UI) is a common and debilitating condition among people with multiple sclerosis (MS) and is more prevalent among women. Over the past decade, numerous studies have investigated the effects of pelvic floor muscle training (PFMT) as a treatment for UI in people with MS. MS negatively impacts pulmonary function even in the early stages of the disease and people with MS may experience respiratory muscle weakness.

View Article and Find Full Text PDF

Obesity is a complex and non-communicable disease with a pandemic entity. Currently, multiple causes can lead to obesity, and it is not always easy to create a direct relationship between physical inactivity, poor quality of nutrients consumed, and calculation of excess calories. Among the associated comorbidities, obesity creates a dysfunctional environment of respiratory rhythms at the central and peripheral levels, with functional, morphological, and phenotypic alteration of the diaphragm muscle.

View Article and Find Full Text PDF

Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.

View Article and Find Full Text PDF

Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!