Ethylene vinyl acetate copolymer (EVA) alone could be used as a binder material for the fabrication of hydroxyapatite (HAP) into intricate shapes for various bone substitute applications. It was observed that as the vinyl acetate content in the polymer was increased from 12 to 28 wt % an increase in the sintered density of the HAP was observed. Retention of the shapes of HAP in the molded form was also observed.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1014739326345DOI Listing

Publication Analysis

Top Keywords

vinyl acetate
16
acetate content
8
acetate copolymer
8
vinyl
4
content sintering
4
sintering behavior
4
behavior hydroxyapatite-ethylene
4
hydroxyapatite-ethylene vinyl
4
copolymer composites
4
composites ethylene
4

Similar Publications

Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles.

Waste Manag

December 2024

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.

With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.

View Article and Find Full Text PDF

The ring-opening polymerization of bio-based monomer 2-methylene-1,3-dioxepane (MDO) can reportedly enhance polymer degradability. Butyl acrylate (BA)/MDO/vinyl acetate (VAc) terpolymers were synthesized via emulsion polymerization for their eventual application as pressure-sensitive adhesives (PSAs). While using MDO in emulsion polymerization leads to a more sustainable process, it also presents challenges such as MDO hydrolysis, MDO ring retention, and inadequate MDO distribution.

View Article and Find Full Text PDF

Amorphous solid dispersions (ASDs) offer a well-recognized strategy to improve the effective solubility and, hence, bioavailability of poorly soluble drugs. In this study, we developed an extensive library of a significant number of solid dispersion formulations using a library of chemically diverse drugs combined with a water-soluble polymer (polyvinylpyrrolidone vinyl acetate, PVPVA) at different loadings. These formulations were printed as microarrays of solid dispersion formulations, utilizing minimal material amounts (nanograms).

View Article and Find Full Text PDF

Glycyrrhetinic acid (GA) possesses various pharmacological effects, including anti-inflammatory, anti-tumor, and anti-viral properties. However, its clinical application is limited by poor solubility and low oral bioavailability. Polymers play a crucial role in pharmaceutical formulations, particularly as matrices in excipients to enhance the solubility, bioavailability, and stability of active pharmaceutical ingredients.

View Article and Find Full Text PDF

Screening for microplastics in agricultural soils: Applying green chemistry principles in extraction and analysis.

Environ Pollut

December 2024

REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:

In recent years, microplastic (MP) pollution has garnered significant attention owing to its ability to permeate various ecosystems, including soil. These particles can infiltrate the environment, either directly or through the degradation of larger plastic items. Despite growing concerns, standardized methods for quantification are still lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!