Calcium phosphate cements (CPC) have proven successful in the repair of small, non-stress bearing skeletal defects. These cements do not have sufficient tensile strength or fracture toughness to allow their use in stress-bearing applications. It was hypothesized that a bioresorbable fiber mesh would improve the load-bearing behavior of shell structures fabricated of CPC. This study used a biaxial flexure fixture to compare the work-to-fracture values of discs made of: (1) CPC; (2) CPC reinforced with a bioresorbable two-dimensionally oriented poly(glactin) fiber-mesh; and (3) poly(methyl methacrylate) (PMMA) that were immersed in a serum-like solution for 0-28 days. CPC-mesh and PMMA discs were indistinguishable at 0, 1 and 7 days, based on work-to-fracture data. CPC and CPC-mesh discs were indistinguishable at day 28, because of fiber hydrolysis. The knitted fiber-mesh was effective in improving load-bearing behavior of a calcium phosphate cement for potential structural repair of bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1008992900829DOI Listing

Publication Analysis

Top Keywords

load-bearing behavior
12
calcium phosphate
8
discs indistinguishable
8
cpc
5
behavior simulated
4
simulated craniofacial
4
craniofacial structure
4
structure fabricated
4
fabricated hydroxyapatite
4
hydroxyapatite cement
4

Similar Publications

Outcomes of surgically treated posterior pelvic fractures in an Australian population: A multicenter study.

Injury

January 2025

Department of Surgery, The Trauma and Orthopaedic Research Unit, The Canberra Hospital, Garran, Australian Capital Territory, Australia.

Background: Unstable posterior pelvic-ring fractures are rare and difficult to manage. There are many injury patterns, they are associated with high morbidity and mortality, and optimal surgical management remains contentions. This study aims to compare outcomes and complications for different surgical management of these injuries.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

The issues of numerous steel beam components and the tendency for deck cracking under negative bending moment zones have long been challenges faced by traditional composite I-beams with flat steel webs. This study introduces an optimized approach by modifying the structural design and material selection, specifically substituting flat steel webs with corrugated steel webs and using ultra-high-performance concrete for the deck in the negative bending moment zone. Three sets of model tests were conducted to compare and investigate the influence of deck material and web forms on the bending and crack resistance of steel-concrete composite I-beams under a negative bending moment zone.

View Article and Find Full Text PDF

In this study, the usability of construction and demolition waste (CDW) aggregates as filling when stabilized with alkaline activator solution (AAS) and blast furnace slag (BFS) was investigated. The initial stage of this study involved determining the engineering properties of CDW by laboratory experiments. In the next stage, modified Proctor tests were performed to investigate the compaction behavior of CDW, to which 5% to 30% BFS was added with water or AAS.

View Article and Find Full Text PDF

This study explores the tensile performance of blind rivet joints in galvanized steel sheets, focusing on their behavior under shear and normal load conditions. Blind rivets are frequently used in structural applications due to their ease of installation and ability to be applied from one side, making them highly effective in industries like aerospace and automotive. Two types of DIN 7337-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!