Olfactory receptors (ORs) comprise more than half of the large class I G protein-coupled receptor (GPCR) superfamily. Although cloned over a decade ago, little is known about their properties because wild-type ORs do not efficiently reach the cell surface following heterologous expression. Receptor-receptor interactions strongly influence surface trafficking of other GPCRs, and we examined whether a similar mechanism might be involved in OR surface expression. Olfactory neurons are known to express beta-adrenergic receptors (ARs), and we found that coexpression with beta(2)-ARs, but not any other AR subtypes, dramatically increased mouse 71 (M71) OR surface expression in human embryonic kidney 293 cells. A persistent physical interaction between M71 ORs and beta(2)-ARs was shown by coimmunoprecipitation and by cointernalization of the two receptors in response to their specific ligands. Also, coexpression of wild-type M71 ORs with beta(2)-ARs resulted in cAMP responses to the M71 ligand acetophenone. Finally, in situ hybridization studies showed extensive colocalization of M71 OR and beta(2)-AR expression in mouse olfactory epithelium. These data demonstrate the successful heterologous surface expression of a functional wild-type OR and reveal that persistent physical association with other GPCRs can control OR surface expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC518811 | PMC |
http://dx.doi.org/10.1073/pnas.0403854101 | DOI Listing |
BMJ Oncol
May 2024
Sarah Cannon Cancer Institute, Nashville, Tennessee, USA.
Objective: The arginase inhibitor INCB001158 was evaluated for safety (primary endpoint) in locally advanced or metastatic solid tumours; pharmacokinetics, pharmacodynamics and efficacy were also assessed.
Methods And Analysis: In this non-randomised, open-label, three-part phase 1 study, INCB001158 was orally administered two times per day as monotherapy or in combination with intravenous pembrolizumab 200 mg every 3 weeks. Dose expansion was conducted in tumour-type cohorts (with or without prior anti-PD-1/PD-L1 (programmed death protein 1/programmed death ligand 1) therapy).
BMJ Oncol
January 2025
Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.
Objective: Cancer patients aged ≥80 years present unique characteristics affecting response to immune checkpoint inhibitors (ICIs), with unidentified molecular differences. This study aimed to explore potential biomarkers of response to ICI in patients ≥80 years.
Methods And Analysis: We analysed tumour samples (n=24 123) from patients ≥80 (versus<80) with non-small cell lung cancer (NSCLC), melanoma (MEL), and renal cell cancer (RCC).
Psychiatry Investig
January 2025
Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea.
Objective: This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity.
Methods: Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs.
J Nanobiotechnology
January 2025
Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Extracellular vesicles (EVs) are taken up by most cells, however specific or preferential cell targeting remains a hurdle. This study aims to develop an EV that targets cells involved in inflammation, specifically those expressing intercellular adhesion molecule-1 (ICAM-1). To target these cells, we overexpress the ICAM-1 binding receptor "lymphocyte function-associated antigen-1" (LFA-1) in HEK293F cells, by sequential transfection of plasmids of the two LFA-1 subunits, ITGAL and ITGB2 (CD11a and CD18).
View Article and Find Full Text PDFSci Rep
January 2025
Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!