The stimulation of cellular cholesterol and phospholipid efflux by apolipoprotein A-I is mediated by the activity of the ATP-binding cassette transporter A1 (ABCA1). Individuals with Tangier disease harbor loss-of-function mutations in this transporter that have proven useful in illuminating its activity. Here, we analyze a mutation that deletes the last 46 residues of the 2261 amino acid transporter (Delta46) and eliminates its lipid efflux. As the final four amino acids of the C terminus represent a putative PDZ-binding motif, we initially characterized deletion mutants lacking only these residues. Although a moderate decline in lipid efflux was detected, this decline was not as profound as that seen in the Delta46 mutant. Subsequent systematic analysis of the ABCA1 C terminus revealed a novel, highly conserved motif (VFVNFA) that was required for lipid efflux. Alteration of this motif, which is present in some but not all members of the ABCA family, did not prevent trafficking of the transporter to the plasma membrane but did eliminate its binding of apoA-I. Chimeric transporters, generated by substituting the C termini of either ABCA4 or ABCA7 for the endogenous terminus, demonstrated that ABCA1 could stimulate cholesterol efflux without its PDZ-binding motif but not without the VFVNFA motif. When a peptide containing the VFVNFA sequence was introduced into ABCA1-expressing cells, ABCA1-mediated lipid efflux was also markedly inhibited. These results indicate that the C-terminal VFVNFA motif of ABCA1 is essential for its lipid efflux activity. The data also suggest that this motif participates in novel protein-protein interactions that may be shared among members of the ABCA family.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M409848200 | DOI Listing |
Alzheimers Dement
December 2024
Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: While compelling evidence highlights the importance of myeloid cells in the etiology of Alzheimer's Disease (AD), the relevance of immunometabolism still requires further exploration. Our analysis integrating AD genetics and myeloid cell genomics shows that lower levels of LACTB expression in myeloid cells is protective against AD, a finding supported by proteomics studies. As a mitochondrial active-site serine protein, LACTB has implications for mitochondrial morphology and bioenergetics.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Microglial processing and recycling of debris is implicated in AD. AD GWAS loci are enriched for genes in efferocytosis, phagocytosis, endosomal trafficking and cholesterol efflux. Acting as a buffer, lipid droplets increase as a consequence of an imbalance between lipid debris influx and efflux rates.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
Background: Lewy body dementia (LBD) is the second most prevalent dementia in the United States after Alzheimer's disease (AD). Recent studies have implicated rare mutations in two lipid transport genes, ABCA1 and ATP8B4, in Alzheimer's disease. Substantial co-pathology and shared risk factors indicate an intersectional genetic architecture between LBD and AD; therefore, we investigated the association of rare mutations in ABCA1 and ATP8B4 with LBD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: The APOE ε4 allele is the most prominent genetic predisposition for sporadic Alzheimer's disease (AD). Amylin, a neuroendocrine hormone co-secreted with insulin from the pancreas, is increased in blood in AD and readily forms neurotoxic homo- and hetero-oligomers with β-amyloid in AD. Previously, we showed that intravenously infused ApoE4 in rats expressing human amylin specifically in the pancreas led to increased brain amylin accumulation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Impaired interstitial fluid drainage in the brain is indicated by the presence of perivascular β-amyloid (Aβ) deposits and is attributed to alterations in contractility and relaxation of vascular smooth muscle cells (SMCs). The brain microvasculature in Alzheimer disease (AD) accumulates amyloid-forming amylin secreted from the pancreas. Here, we tested the hypothesis that cerebrovascular amylin deposits perturbs cerebral Aβ efflux by impairing cerebral vasodilation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!