Many abiotic and biotic factors can influence the partitioning equilibrium of heavy metals, thus influencing metal impact on aquatic environments. Unicellular algal species release soluble organic substances able to complex metals. In our laboratory a Cr-tolerant strain was selected and isolated from a wild type strain of Scenedesmus acutus. The exudates released by the two strains counteracted the growth inhibition caused by Cr(VI) and the exudates of the Cr-tolerant strain were more effective. On the contrary, the exudates did not reduce chromium toxicity to the cladoceran Daphnia magna. The reduction of chromium effect on algae seems the consequence of an algae-specific interaction among Cr(VI), exudates and algal cells. Chromium uptake resulted to be energy-dependent since bioaccumulation rate in subdued light condition was lower than at high light intensity. The effect of Cr(VI) on algae changed depending on metabolism of the cells and in particular it seemed to be related to the bioaccumulation rate. Tolerance in the selected strain could not be ascribed to a lower uptake of chromium. The difference in sensitivity to chromium between the two strains was exploited to evaluate if tolerance acquired by algae could have consequences for Daphnia. After treatment with Cr(VI), the two strains of S. acutus were used as food source for D. magna. The results indicate that chromium is accumulated by algae in a form not available for daphnids and that Cr tolerance acquired by the algae can be of some advantage to the consumer organism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adic.200490064DOI Listing

Publication Analysis

Top Keywords

cr-tolerant strain
8
crvi exudates
8
bioaccumulation rate
8
tolerance acquired
8
acquired algae
8
chromium
7
algae
5
bioavailability bioaccumulation
4
tolerance
4
bioaccumulation tolerance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!