Modulation of dexamethasone-induced thymocyte apoptosis by heat-shock protein 90-binding agents.

Bull Tokyo Dent Coll

Department of Biochemistry, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.

Published: February 2004

Heat-shock protein 90 (HSP90) is known to affect a variety of cellular activities. The present study showed that the HSP90-binding agents, geldanamycin, herbimycin A and radicicol, inhibited the murine thymocyte apoptosis induced by dexamethasone and was accompanied by the inhibition of the reduction of the mitochondrial transmembrane potential (delta psi m). HSP90-binding agents did not inhibit etoposide-induced apoptosis. The inhibition of dexamethasone-induced apoptosis was in part due to the interference of HSP90 with the glucocorticoid receptor, resulting in the inhibition of nuclear translocation of the receptor. The expression of inositol 1,4,5-triphosphate receptors, which were shown to be involved in dexamethasone-induced apoptosis, did not participate in the inhibition of apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.2209/tdcpublication.45.1DOI Listing

Publication Analysis

Top Keywords

thymocyte apoptosis
8
heat-shock protein
8
hsp90-binding agents
8
dexamethasone-induced apoptosis
8
apoptosis
6
modulation dexamethasone-induced
4
dexamethasone-induced thymocyte
4
apoptosis heat-shock
4
protein 90-binding
4
90-binding agents
4

Similar Publications

RORγt inverse agonists demonstrating a margin between inhibition of IL-17A and thymocyte apoptosis.

PLoS One

January 2025

Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

Multiple genetic associations suggest a causative relationship between Th17-related genes coding for proteins, such as IL-17A, IL-23 and STAT3, and psoriasis. Further support for this link comes from the findings that neutralizing antibodies directed against IL-17A, IL-17RA and IL-23 are efficacious in diseases like psoriasis, psoriatic arthritis and ankylosing spondylitis. RORγt is a centrally positioned transcription factor driving Th17 polarization and cytokine secretion and modulation of RORγt may thus provide additional benefit to patients.

View Article and Find Full Text PDF

The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.

View Article and Find Full Text PDF

Inhibition of TOX exerts anti-tumor effects in acute myeloid leukemia by upregulating IRF7 expression.

Eur J Pharmacol

January 2025

Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China. Electronic address:

Thymocyte selection-associated high mobility group box protein (TOX) is regarded as a crucial transcription factor involved in T cell exhaustion in acute myeloid leukemia (AML). Previous studies have identified aberrant TOX expression as a major oncogenic driver in hematologic malignancies, indicating that TOX may potentially be both an immune biomarker and an immunotherapy target. However, due to heterogeneity in the distribution patterns of TOX and its correlation with clinical prognosis, the mechanism underlying TOX-mediated tumor immune responses remains unclear.

View Article and Find Full Text PDF

Alterations inactivating the tumor suppressor gene PTEN drive the development of solid and hematological cancers, such as T-cell acute lymphoblastic leukemia (T-ALL), whereby PTEN loss defines poor-prognosis patients. We investigated the metabolic rewiring induced by PTEN loss in T-ALL, aiming at identifying novel metabolic vulnerabilities. We showed that the enzyme ATP citrate lyase (ACLY) is strictly required for the transformation of thymic immature progenitors and for the growth of human T-ALL, which remain dependent on ACLY activity even upon transformation.

View Article and Find Full Text PDF

The thymus is the central organ involved with T-cell development and the production of naïve T cells. During normal aging, the thymus undergoes marked involution, reducing naïve T-cell output and resulting in a predominance of long-lived memory T cells in the periphery. Outside of aging, systemic stress responses that induce corticosteroids (CS), or other insults such as radiation exposure, induce thymocyte apoptosis, resulting in a transient acute thymic involution with subsequent recovery occurring after cessation of the stimulus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!