Identification of SNF1/AMP kinase-related kinase as an NF-kappaB-regulated anti-apoptotic kinase involved in CD95-induced motility and invasiveness.

J Biol Chem

Committees on Immunology and Cancer Biology, Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA.

Published: November 2004

The death receptor CD95 (APO-1/Fas) induces apoptosis in many tissues. However, in apoptosis-resistant tumor cells, stimulation of CD95 induces up-regulation of a defined number of mostly anti-apoptotic genes, resulting in increased motility and invasiveness of tumor cells. The majority of these genes are known NF-kappaB target genes. We have identified one of the CD95-regulated genes as the serine/threonine kinase (SNF1/AMP kinase-related kinase (SNARK)), which is induced in response to various forms of metabolic stress. We demonstrate that up-regulation of SNARK in response to CD95 ligand and tumor necrosis factor alpha depends on activation of NF-kappaB. Overexpression of SNARK rendered tumor cells more resistant, whereas a kinase-inactive mutant of SNARK sensitized cells to CD95-mediated apoptosis. Furthermore, small interfering RNA-mediated knockdown of SNARK increased the sensitivity of tumor cells to CD95 ligand- and TRAIL-induced apoptosis. Importantly, cells with reduced expression of SNARK also showed reduced motility and invasiveness in response to CD95 engagement. SNARK therefore represents an NF-kappaB-regulated anti-apoptotic gene that contributes to the tumor-promoting activity of CD95 in apoptosis-resistant tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M404334200DOI Listing

Publication Analysis

Top Keywords

tumor cells
20
motility invasiveness
12
snf1/amp kinase-related
8
kinase-related kinase
8
nf-kappab-regulated anti-apoptotic
8
apoptosis-resistant tumor
8
response cd95
8
cells
7
snark
7
cd95
6

Similar Publications

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!