Assessment of production conditions for efficient use of Escherichia coli in high-yield heterologous recombinant selenoprotein synthesis.

Appl Environ Microbiol

Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden.

Published: September 2004

The production of heterologous selenoproteins in Escherichia coli necessitates the design of a secondary structure in the mRNA forming a selenocysteine insertion sequence (SECIS) element compatible with SelB, the elongation factor for selenocysteine insertion at a predefined UGA codon. SelB competes with release factor 2 (RF2) catalyzing translational termination at UGA. Stoichiometry between mRNA, the SelB elongation factor, and RF2 is thereby important, whereas other expression conditions affecting the yield of recombinant selenoproteins have been poorly assessed. Here we expressed the rat selenoprotein thioredoxin reductase, with titrated levels of the selenoprotein mRNA under diverse growth conditions, with or without cotransformation of the accessory bacterial selA, selB, and selC genes. Titration of the selenoprotein mRNA with a pBAD promoter was performed in both TOP10 and BW27783 cells, which unexpectedly could not improve yield or specific activity compared to that achieved in our prior studies. Guided by principal component analysis, we instead discovered that the most efficient bacterial selenoprotein production conditions were obtained with the high-transcription T7lac-driven pET vector system in presence of the selA, selB, and selC genes, with induction of production at late exponential phase. About 40 mg of rat thioredoxin reductase with 50% selenocysteine content could thereby be produced per liter bacterial culture. These findings clearly illustrate the ability of E. coli to upregulate the selenocysteine incorporation machinery on demand and that this is furthermore strongly augmented in late exponential phase. This study also demonstrates that E. coli can indeed be utilized as cell factories for highly efficient production of heterologous selenoproteins such as rat thioredoxin reductase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC520894PMC
http://dx.doi.org/10.1128/AEM.70.9.5159-5167.2004DOI Listing

Publication Analysis

Top Keywords

thioredoxin reductase
12
production conditions
8
escherichia coli
8
production heterologous
8
heterologous selenoproteins
8
selenocysteine insertion
8
selb elongation
8
elongation factor
8
factor rf2
8
selenoprotein mrna
8

Similar Publications

Synthesis and discovery of simplified pleurotin analogs bearing tricyclic core as novel thioredoxin reductase inhibitors.

Eur J Med Chem

January 2025

Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou Medical College, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China. Electronic address:

Pleurotin (1) is a benzoquinone meroterpenoid known for its wide-spectrum antitumor and antibiotic activities, notably acting as natural inhibitors of the thioredoxin reductase (TrxR). Pleurotin (1) has been chemically synthesized, but only in milligram quantities through at least 13 longest linear steps with 0.8 % overall yield due to its complex structure such as fused hexacyclic core with 8 contiguous stereocenters.

View Article and Find Full Text PDF

Redox modification of mA demethylase SlALKBH2 in tomato regulates fruit ripening.

Nat Plants

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Hydrogen peroxide (HO) functions as a critical signalling molecule in controlling multiple biological processes. How HO signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an mA demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by HO, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process.

View Article and Find Full Text PDF

Oxidative Stress in Aortic Valves Associated with Infective Endocarditis: A Report on Three Cases.

Diagnostics (Basel)

December 2024

Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico.

Infective endocarditis (IE) most commonly results from infections by Gram-positive bacteria, and, in this condition, the redox homeostasis is lost due to the overproduction of HO, leading to the overstimulation of the immune system and the upregulation of the production of proinflammatory cytokines. The aim of this study was to evaluate the levels of oxidative biomarkers and the enzymatic and non-enzymatic antioxidant systems in subjects with IE. The study included three cases with IE that had undergone aortic valve replacement (AVR) surgery that was complicated by IE, comparing them with subjects with AVR without IE.

View Article and Find Full Text PDF

Bee products are an important source of nutrients and bioactive phytochemicals. This study aimed to determine the chemical composition (proximate composition, general phytochemical composition, sugar, and phenolic profiles) of four different products (honey, bee pollen, bee bread, and propolis), obtained from the same apiary, as well as to assess their biological activity through antioxidant and enzyme inhibition assays (α-amylase, α-glucosidase, lipase, AchE, neuraminidase, angiotensin-converting enzyme, urease, trypsin, tyrosinase, carbonic anhydrase, thioredoxin reductase, adenosine deaminase). Clear differences were observed among the samples in terms of both chemical composition and biological activity.

View Article and Find Full Text PDF

Thiol-Based Redox Molecules: Potential Antidotes for Acrylamide Toxicity.

Antioxidants (Basel)

November 2024

Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

is a low-molecular weight, non-aromatic reagent, widely used in industry, such as in the manufacture of paper, textiles, plastics, cosmetics, and dyes. ACR is formed during the cooking of starchy food and its toxicity results mainly by conferring oxidative stress by elevating reactive oxygen species (ROS). To identify potential antidotes for ACR toxicity, we evaluated the efficacy of several thiol-based molecules known for ROS-scavenging, disulfide-reducing properties, and inhibition of oxidative stress-induced activation of the mitogen-activated protein kinases (MAPKs): the extracellular-signal-regulated-kinases (ERK1/2), p38-mitogen-activated-protein-kinases (p38), and c-Jun-N-terminal-kinases (JNKs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!