Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The design, fabrication, and performance of miniature high-frequency annular arrays are described. A 50-MHz, 2-mm-diameter, 7-element, equal-area annular array was fabricated and tested. The array elements were defined using photolithography and the electrical contacts were made using ultrasonic wire bonding. The resulting transducer produced pulses with a -6 dB bandwidth of 52% and an insertion loss of -16 dB. A radiation pattern was collected by scanning the transducer array above the tip of a glass fiber. A -6 dB two-way beam width of 75 microns was found at f/2. The radiation pattern decreased smoothly to less than -60 dB at a distance of 550 microns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tuffc.2004.1324405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!