[Cloning and analyzing of the cDNA sequence of CHS-A gene of Narcissus].

Shi Yan Sheng Wu Xue Bao

The Key Laboratory for Cell Biology and Tumor Cell Engineering, Ministry of Education, Xiamen University, Xiamen 361005.

Published: September 2002

Chalcone synthase (CHS) is a key enzyme in the biosynthesis of all classes of flavonoids. The production of flower pigment is specifically regulated by the activity of CHS. We cloned the cDNA sequence of CHS-A gene from Narcissus by PCR and analyzed the coding sequence of gene. The result demonstrated that the sequence of the coding region was 1167bp, encoding a protein of 389 amino acid which was more than 80% homology with CHS of the other 8 plants, such as Nicotine abacus and Solana tuberosum.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cdna sequence
8
sequence chs-a
8
chs-a gene
8
[cloning analyzing
4
analyzing cdna
4
sequence
4
gene narcissus]
4
narcissus] chalcone
4
chalcone synthase
4
synthase chs
4

Similar Publications

Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory of Agro-environment and Agro-products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

As an important starch crop, sweet potato has significant practical importance for maintaining food security worldwide. This study identified differential expressed genes associated with the expansion of tuberous roots by comparing the transcriptome across tuberous roots at the initial period (initiated tuberous roots (ITRs), rapid expansion period (tuberous roots (TRs), fibrous roots (FRs) at the seedling stage, and fibrous roots at the adult stage (unexpanded FRs (UFRs)). sRNA-seq and degradome analyses were performed to reveal the role of miRNAs in tuberous root development in sweet potato.

View Article and Find Full Text PDF

Simultaneous or separate detection of heavy metal ions Hg and Ag based on lateral flow assays.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors have revolutionized cancer therapy, but many patients fail to respond or develop resistance, often due to reduced T cell activity. Costimulation via 4-1BB has emerged as a promising approach to enhance the effector function of antigen-primed T cells. Bispecific T cell-engaging (TCE) antibodies are an effective way to provide tumor-specific T cell receptor-mediated signaling to tumor-infiltrating lymphocytes.

View Article and Find Full Text PDF

The tardigrade Hypsibius exemplaris is an emerging model organism renowned for its ability to survive environmental extremes. To explore the molecular mechanisms and genetic basis of such extremotolerance, many studies rely on RNA-sequencing (RNA-seq), which can be performed on populations ranging from large cohorts to individual animals. Reverse transcription polymerase chain reaction (RT-PCR) and RNA interference (RNAi) are subsequently used to confirm RNA-seq findings and assess the genetic requirements for candidate genes, respectively.

View Article and Find Full Text PDF

'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs.

Nucleic Acids Res

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.

We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!