Switching on kinases: oncogenic activation of BRAF and the PDGFR family.

Nat Rev Cancer

Institute of Reproductive and Developmental Biology, Imperial College, Hammersmith Campus, London W12 ONN, UK.

Published: September 2004

The cytoplasmic serine/threonine kinase BRAF and receptor tyrosine kinases of the platelet-derived growth factor receptor (PDGFR) family are frequently activated in cancer by mutations of an equivalent amino acid. Structural studies have provided important insights into why these very different kinases share similar oncogenic hot spots and why the PDGFR juxtamembrane region is also a frequent oncogenic target. This research has implications for other kinases that are mutated in human tumours and for the treatment of cancer using kinase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrc1434DOI Listing

Publication Analysis

Top Keywords

pdgfr family
8
switching kinases
4
kinases oncogenic
4
oncogenic activation
4
activation braf
4
braf pdgfr
4
family cytoplasmic
4
cytoplasmic serine/threonine
4
serine/threonine kinase
4
kinase braf
4

Similar Publications

Extracranial arteriovenous malformations (eAVMs) are complex vascular lesions characterized by anomalous arteriovenous connections, vascular instability, and disruptions in endothelial cell (EC)-to-mural cell (MC) interactions. This study sought to determine whether eAVM-MCs could induce endothelial-to-mesenchymal transition (EndMT), a process known to disrupt vascular integrity, in the eAVM microenvironment. eAVM and paired control tissues were analyzed using RT-PCR for EC (, , and ) and EndMT-specific markers (, , , /.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

PDGFRB promotes dedifferentiation and pulmonary metastasis through rearrangement of cytoskeleton under hypoxic microenvironment in osteosarcoma.

Cell Signal

January 2025

Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, PR China; Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai 200072, PR China. Electronic address:

Background: Osteosarcoma (OS) cells commonly suffer from hypoxia and dedifferentiation, resulting in poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated cellular signaling.

Methods: We performed sphere formation assays and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers.

View Article and Find Full Text PDF

The platelet-derived growth factor (PDGF) family contributes to the progression of steatohepatitis; however, changes in and the characteristics of isoform-specific expression remain unclear. Since diabetes is a major driver of metabolic dysfunction-associated steatohepatitis (MASH), we characterized the mouse model of diabetic MASH (dMASH) by focusing on PDGF signaling. Pdgfa-d expression was markedly higher in hepatic stellate cells among flow-sorted cells in control mice and also increased in dMASH.

View Article and Find Full Text PDF

Purpose Of Review: Current biological findings provide new insights into the genetics driving growth of low-grade gliomas in pediatric patients. This has provided new targets for novel therapies. The purpose of this paper is to review novel therapies for pediatric low-grade gliomas that have been published in the past 24 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!