Human embryonic stem cells (hESCs) promise to revolutionize reparative medicine through their potential in developing cell replacement therapies for diseases like diabetes and parkinsonism. Most of the existing hESC lines available for research, including all National Institutes of Health-registered lines, have been derived and maintained on mouse embryonic fibroblast feeders in the presence of xenoproteins. For future clinical application, many more hESC lines derived and grown in current good manufacturing practice, good tissue culture practice, and xeno-free conditions need to be developed. Concurrently, effective cryopreservation methods that prevent or limit the accidental contact of hESCs with nonsterile liquid nitrogen during periods of long-term storage have to be formulated. We describe a safe, xeno-free cryopreservation protocol for hESCs involving vitrification in closed sealed straws using human serum albumin as opposed to fetal calf serum as the main protein source in the cryoprotectant and long-term storage in the vapor phase of liquid nitrogen. After thaw, hESCs exhibited high thaw-survival rates and low differentiation rates, remained pluripotent, and maintained normal diploid karyotypes throughout extended passage. The cryopreservation technique we describe here should complement xeno-free culture conditions for hESCs already in refinement and will prove very useful for the setting up of hESC banks throughout the world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.22-5-779 | DOI Listing |
Stem Cell Res Ther
April 2023
Unidad de Producción y Reprogramación Celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), Fundación Progreso y Salud, 41092, Seville, Spain.
Background: There remains much interest in improving cryopreservation techniques for advanced therapy medicinal products (ATMPs). Recently, human platelet lysate (hPL) has emerged as a promising candidate to replace fetal bovine serum (FBS) as a xeno-free culture supplement for the expansion of human cell therapy products. Whether hPL can also substitute for FBS in cryopreservation procedures remains poorly studied.
View Article and Find Full Text PDFJ Transl Med
September 2022
Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
Background: Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications.
View Article and Find Full Text PDFJ Stem Cells Regen Med
April 2022
CK Cell Technologies, Pty Ltd. NSW AUSTRALIA 2153.
Mesenchymal stem cells derived from adipose tissue (ADMSCs) are being increasingly considered in regenerative medicine-based clinical applications. Apart from possessing therapeutic applications themselves, ADMSCs also secrete a myriad of soluble factors which are promising candidates for treating several degenerative diseases such as osteoarthritis and neurodegenerative diseases, wound repair as well as for cosmeceutical purposes. In our research study, we successfully isolated ADMSCs in-house, now called CKC-Endeavour-1 from the lipoaspirate sample of a patient who underwent liposuction.
View Article and Find Full Text PDFStem Cell Res Ther
August 2022
Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Background: Critical limb ischemia (CLI) is the most severe form of peripheral artery disease and exhibits a high risk of lower extremity amputations. As even the most promising experimental approaches based on mesenchymal stem cells (MSCs) demonstrated only moderate therapeutic effects, we hypothesized that other cell types with intrinsic roles in angiogenesis may exhibit a stronger therapeutic potential. We have previously established a protocol to source human peripheral blood-derived angiogenic cells (BDACs).
View Article and Find Full Text PDFTransfusion
September 2022
Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.
Background: Human platelet lysate (HPL) has been proposed as a safe and efficient xeno-free alternative to fetal bovine serum (FBS) for large-scale culturing of cell-based medicinal products. However, the use of blood derivatives poses a potential risk of pathogen transmission. To mitigate this risk, different pathogen reduction treatment (PRT) practices can be applied on starting materials or on final products, but these methods might modify the final composition and the quality of the products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!