The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43 from Bacillus sp. KSM-KP43, with a C-terminal extension domain, was determined by the multiple isomorphous replacements method with anomalous scattering. The native form was refined to a crystallographic R factor of 0.134 (Rfree of 0.169) at 1.30-A resolution. KP-43 consists of two domains, a subtilisin-like alpha/beta domain and a C-terminal jelly roll beta-barrel domain. The topological architecture of the molecule is similar to that of kexin and furin, which belong to the subtilisin-like proprotein convertases, whereas the amino acid sequence and the binding orientation of the C-terminal beta-barrel domain both differ in each case. Since the C-terminal domains of subtilisin-like proprotein convertases are essential for folding themselves, the domain of KP-43 is also thought to play such a role. KP-43 is known to be an oxidation-resistant protease among the general subtilisin-like proteases. To investigate how KP-43 resists oxidizing reagents, the structure of oxidized KP-43 was also determined and refined to a crystallographic R factor of 0.142 (Rfree of 0.212) at 1.73-A resolution. The structure analysis revealed that Met-256, adjacent to catalytic Ser-255, was oxidized similarly to an equivalent residue in subtilisin BPN'. Although KP-43, as well as proteinase K and subtilisin Carlsberg, lose their hydrolyzing activity against synthetic peptides after oxidation treatment, all of them retain 70-80% activity against proteinaceous substrates. These results, as well as the beta-casein digestion pattern analysis, have indicated that the oxidation of the methionine adjacent to the catalytic serine is not a dominant modification but might alter the substrate specificities.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M409089200DOI Listing

Publication Analysis

Top Keywords

beta-barrel domain
12
crystal structure
8
structure oxidatively
8
oxidatively stable
8
stable subtilisin-like
8
subtilisin-like alkaline
8
alkaline serine
8
serine protease
8
kp-43
8
protease kp-43
8

Similar Publications

The RNA-binding S1 domain is a β-barrel with a highly conserved RNA-binding site on its surface. This domain is an important part of the structures of different bacterial, archaeal, and eukaryotic proteins. A distinctive feature of the S1 domain is multiple presences (structural repeats) in proteins and protein complexes.

View Article and Find Full Text PDF

Unlabelled: The papillomavirus (PV) E2 protein is highly conserved, consisting of an N-terminal transactivation domain linked to a C-terminal DNA binding and dimerization domain (DBD) by a flexible hinge region. The E2 DBD exhibits a helix-turn-helix structure that dimerizes into a beta barrel prior to binding DNA; the first helix, α1, is responsible for recognition of the palindromic E2 binding site. The DNA recognition helix consists of a tract of basic amino acids with a highly conserved central cysteine residue.

View Article and Find Full Text PDF
Article Synopsis
  • OmpA is an important outer membrane protein that influences bacterial virulence, adhesion, and membrane integrity, but its exact role has been unclear for over 50 years.
  • This study reveals that OmpA plays a key role in organizing the outer membrane protein structure and connects it to the cell wall, helping to maintain the bacteria's protective barrier.
  • The research shows that both parts of OmpA—its β-barrel domain and cell wall-binding domain—are essential for strengthening the bacterial envelope, making it more resilient and crucial for bacterial survival.
View Article and Find Full Text PDF

Rotavirus A (RVA) infects a relatively wide host range. Studying the evolutionary dynamics of viral genomes and the evolution of host adaptations can inform the development of epidemiological models of disease transmission. Moreover, comprehending the adaptive evolution of viruses in the host could provide insights into how viruses promote evolutionary advantages on a larger scale at host level.

View Article and Find Full Text PDF

Integrated computational characterization of valosin-containing protein double-psi β-barrel domain: Insights into structural stability, binding mechanisms, and evolutionary significance.

Int J Biol Macromol

December 2024

Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India. Electronic address:

Valosin-containing protein (VCP) plays a crucial role in various cellular processes, yet the molecular mechanisms and structural dynamics of its double-psi β-barrel (DPBB) domain, particularly in human, remain insufficiently explored. While previous studies have characterized the VCP_DPBB domain in other organisms, such as thermoplasma acidophilum and methanopyrus kandleri, its evolutionary conservation, binding potential, and stability in human require further investigation. To address this gap, we first employed all-atom molecular dynamics (AAMD) simulations to examine the structural dynamics of the human VCP_DPBB domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!